Friday, February 13, 2026

FORTRAN REIMAGINED: A MODERN SCIENTIFIC COMPUTING LANGUAGE



Introduction


If FORTRAN were invented today, it would emerge as a fundamentally different language while maintaining its core mission of high-performance scientific computing. The language would incorporate decades of programming language research, modern software engineering practices, and contemporary hardware architectures. This reimagined FORTRAN would blend the mathematical expressiveness that made the original language successful with the safety, maintainability, and developer experience expectations of modern programming environments.


The original FORTRAN, created in the 1950s, revolutionized scientific computing by allowing researchers to express mathematical concepts in a form closer to mathematical notation than assembly language. A modern FORTRAN would extend this philosophy by incorporating type safety, memory safety, concurrency primitives, and ecosystem integration that reflects today's computing landscape.


Core Design Principles


A modern FORTRAN would be built on several foundational principles that address both the strengths of the original language and the lessons learned from decades of language evolution. The first principle would be mathematical expressiveness with safety. The language would maintain FORTRAN's strength in expressing mathematical operations naturally while incorporating modern type systems that prevent common programming errors at compile time.


The second principle would be performance by design. Unlike languages that add performance as an afterthought, modern FORTRAN would be designed from the ground up to generate efficient code for scientific workloads. This includes built-in support for vectorization, parallelization, and optimization hints that work seamlessly with modern compilers and hardware.


The third principle would be ecosystem integration. Modern scientific computing requires integration with diverse tools, libraries, and platforms. The language would provide first-class support for interoperability with other languages, package management, and deployment to various computing environments from laptops to supercomputers.


Type System and Safety


The type system of modern FORTRAN would be its most significant departure from the original. Instead of the loose typing that characterized early FORTRAN, the new language would feature a strong, static type system with sophisticated inference capabilities. This system would prevent many categories of runtime errors while maintaining the mathematical expressiveness that scientists expect.


Consider a simple mathematical operation in modern FORTRAN:


    function calculate_kinetic_energy(mass: Real64, velocity: Vector3D) -> Real64

        require mass > 0.0

        ensure result >= 0.0

        

        let speed_squared = dot_product(velocity, velocity)

        return 0.5 * mass * speed_squared

  end function


This example demonstrates several key features of the modern type system. The function signature explicitly declares parameter types and return type, eliminating ambiguity about the function's interface. The Real64 type ensures consistent precision across platforms, while Vector3D represents a mathematical vector with compile-time dimension checking.


The require and ensure clauses implement design by contract, a feature that would be fundamental to modern FORTRAN. These contracts serve both as documentation and as runtime checks that help catch errors early in development. The require clause establishes preconditions that must be true when the function is called, while the ensure clause guarantees postconditions about the function's result.


The type system would also include sophisticated support for units of measurement, addressing a common source of errors in scientific computing:


    type Distance = Real64 meters

  type Time = Real64 seconds

  type Velocity = Distance / Time

    

  function calculate_position(initial_pos: Distance, 

                              initial_vel: Velocity, 

                              acceleration: Velocity/Time, 

                              time: Time) -> Distance

        return initial_pos + initial_vel * time + 0.5 * acceleration * time^2

  end function


This units system would prevent dimensional analysis errors at compile time. The compiler would automatically track units through calculations and reject programs that attempt to add incompatible quantities or return values with incorrect dimensions.


Memory Management and Safety


Modern FORTRAN would incorporate automatic memory management while providing mechanisms for performance-critical code to maintain explicit control when needed. The default approach would use a combination of stack allocation for local variables and automatic garbage collection for heap-allocated data structures.


For scientific computing scenarios where garbage collection pauses are unacceptable, the language would provide deterministic memory management through ownership and borrowing concepts:


    function process_large_dataset(data: owned Array[Real64]) -> Array[Real64]

        let result = Array.new(data.size)

        

        parallel for i in 0..data.size-1

            result[i] = expensive_computation(data[i])

        end parallel

        

        return move result

  end function


The owned keyword indicates that the function takes ownership of the input array, allowing it to be modified or consumed without copying. The move keyword transfers ownership of the result array to the caller, avoiding unnecessary copying of large data structures.


For scenarios requiring shared access to data, the language would provide safe sharing primitives:


    shared immutable global_constants = load_physical_constants()

    

  function calculate_orbital_period(semi_major_axis: Distance) -> Time

        let gravitational_parameter = global_constants.earth_mu

        return 2.0 * pi * sqrt(semi_major_axis^3 / gravitational_parameter)

  end function


The shared immutable declaration creates data that can be safely accessed from multiple threads without synchronization overhead, perfect for physical constants and lookup tables common in scientific applications.


Concurrency and Parallelism


Modern FORTRAN would treat parallelism as a first-class language feature rather than an afterthought. The language would provide multiple levels of parallelism support, from fine-grained vectorization to coarse-grained distributed computing.


At the finest level, the language would automatically vectorize appropriate operations:


    function element_wise_operation(a: Array[Real64], b: Array[Real64]) -> Array[Real64]

        require a.size == b.size

        

        let result = Array.new(a.size)

        

        // Automatically vectorized by compiler

        for i in 0..a.size-1

            result[i] = sin(a[i]) * cos(b[i]) + exp(-a[i] * b[i])

        end for

        

        return result

  end function


For thread-level parallelism, the language would provide structured concurrency primitives that make parallel code easier to reason about:


    function parallel_matrix_multiply(a: Matrix[Real64], b: Matrix[Real64]) -> Matrix[Real64]

        require a.cols == b.rows

        

        let result = Matrix.zeros(a.rows, b.cols)

        

        parallel for i in 0..a.rows-1

            for j in 0..b.cols-1

                let sum = 0.0

                for k in 0..a.cols-1

                    sum += a[i,k] * b[k,j]

                end for

                result[i,j] = sum

            end for

        end parallel

        

        return result

  end function


The parallel for construct would automatically distribute work across available CPU cores while handling synchronization and load balancing. The compiler would analyze the loop body to ensure thread safety and optimize memory access patterns.


For distributed computing scenarios common in large-scale scientific simulations, the language would provide high-level abstractions:


    distributed function simulate_climate_model(initial_conditions: ClimateState) -> ClimateEvolution

        let grid = DistributedGrid.new(global_resolution)

        let state = grid.distribute(initial_conditions)

        

        for timestep in 0..simulation_steps-1

            state = advance_physics(state, timestep)

            

            // Automatic communication and synchronization

            state.synchronize_boundaries()

            

            if timestep % output_frequency == 0

                state.checkpoint("simulation_" + timestep.to_string())

            end if

        end for

        

        return state.gather_results()

    end function


Mathematical Expressiveness


While incorporating modern safety features, the language would maintain and enhance FORTRAN's mathematical expressiveness. Complex mathematical operations would be expressible in notation close to their mathematical representation:


    function solve_heat_equation(initial_temp: Field2D, 

                                boundary_conditions: BoundaryConditions,

                                thermal_diffusivity: Real64,

                                time_steps: Integer) -> Field2D

        

        let dt = 0.01

        let dx = 1.0 / initial_temp.width

        let dy = 1.0 / initial_temp.height

        let alpha = thermal_diffusivity

        

        let temperature = initial_temp.copy()

        

        for step in 1..time_steps

            let new_temp = temperature.copy()

            

            // Finite difference approximation of heat equation

            for i in 1..temperature.width-2

                for j in 1..temperature.height-2

                    let laplacian = (temperature[i+1,j] + temperature[i-1,j] - 2*temperature[i,j]) / dx^2 +

                                   (temperature[i,j+1] + temperature[i,j-1] - 2*temperature[i,j]) / dy^2

                    

                    new_temp[i,j] = temperature[i,j] + alpha * dt * laplacian

                end for

            end for

            

            new_temp.apply_boundary_conditions(boundary_conditions)

            temperature = new_temp

        end for

        

        return temperature

  end function


The language would support operator overloading and custom types that make domain-specific operations natural to express. For linear algebra, common operations would be built into the language:


    function solve_linear_system(A: Matrix[Real64], b: Vector[Real64]) -> Vector[Real64]

        require A.is_square()

        require A.rows == b.size

        require A.is_invertible()

        

        // Built-in linear algebra operations

        return A \ b  // Matrix left division operator

    end function


    function eigenvalue_analysis(matrix: SymmetricMatrix[Real64]) -> (Vector[Real64], Matrix[Real64])

        // Returns eigenvalues and eigenvectors

        return eigendecomposition(matrix)

  end function


Error Handling and Debugging


Modern FORTRAN would incorporate sophisticated error handling that goes beyond the simple error codes of traditional scientific computing. The language would use a result type system that makes error handling explicit and composable:


    type Result[T, E] = Success(T) | Error(E)

    

  function read_experimental_data(filename: String) -> Result[Dataset, IOError]

        match file_system.open(filename)

            case Success(file) =>

                match parse_data_format(file.read_all())

                    case Success(data) => Success(Dataset.new(data))

                    case Error(parse_err) => Error(IOError.ParseError(parse_err))

                end match

            case Error(io_err) => Error(io_err)

        end match

  end function


This approach forces programmers to handle potential errors explicitly while providing clean composition of operations that might fail. The match expression provides pattern matching that makes error handling code clear and maintainable.


For debugging scientific applications, the language would provide built-in support for numerical debugging:


    function newton_raphson_solver(f: Function[Real64 -> Real64], 

                                  df: Function[Real64 -> Real64], 

                                  initial_guess: Real64) -> Real64

        debug_trace("Starting Newton-Raphson with initial guess: " + initial_guess.to_string())

        

        let x = initial_guess

        let tolerance = 1e-12

        let max_iterations = 100

        

        for iteration in 1..max_iterations

            let fx = f(x)

            let dfx = df(x)

            

            debug_assert(abs(dfx) > 1e-15, "Derivative too small, may not converge")

            

            let x_new = x - fx / dfx

            let error = abs(x_new - x)

            

            debug_trace("Iteration " + iteration.to_string() + 

                       ": x = " + x_new.to_string() + 

                       ", error = " + error.to_string())

            

            if error < tolerance

                debug_trace("Converged after " + iteration.to_string() + " iterations")

                return x_new

            end if

            

            x = x_new

        end for

        

        debug_error("Failed to converge after " + max_iterations.to_string() + " iterations")

        error("Newton-Raphson method did not converge")

  end function


The debug_trace, debug_assert, and debug_error functions would provide rich debugging information that could be enabled or disabled at compile time for production builds.


Package Management and Ecosystem


Modern FORTRAN would include a built-in package manager and module system designed specifically for scientific computing needs. The package system would handle not just source code dependencies but also data files, documentation, and computational resources:


    // Package manifest file: package.fortran

    package orbital_mechanics

        version = "2.1.0"

        description = "High-precision orbital mechanics calculations"

        

        dependencies = [

            "linear_algebra >= 3.0.0",

            "astronomical_constants >= 1.5.0",

            "numerical_integration >= 2.0.0"

        ]

        

        data_files = [

            "ephemeris/de440.bsp",

            "earth_models/egm2008.dat"

        ]

        

        computational_requirements = [

            "memory >= 4GB",

            "precision >= 64bit"

        ]

    end package


The module system would support both interface-based programming and implementation hiding:


    module orbital_propagation

        export propagate_orbit, OrbitalElements, StateVector

        

        import linear_algebra.{Vector3D, Matrix3x3}

        import astronomical_constants.{earth_mu, j2_coefficient}

        

        type OrbitalElements = record

            semi_major_axis: Distance

            eccentricity: Real64

            inclination: Angle

            longitude_of_ascending_node: Angle

            argument_of_periapsis: Angle

            true_anomaly: Angle

        end type

        

        type StateVector = record

            position: Vector3D[Distance]

            velocity: Vector3D[Velocity]

        end type

        

        function propagate_orbit(initial_state: StateVector, 

                               time_span: Time) -> StateVector

            // Implementation details hidden from module users

            return runge_kutta_propagation(initial_state, time_span)

        end function

        

        // Private implementation functions not exported

        private function runge_kutta_propagation(state: StateVector, 

                                               dt: Time) -> StateVector

            // Detailed numerical integration implementation

            // ...

        end function

  end module


Interoperability and Integration


Modern FORTRAN would provide seamless interoperability with other languages and systems commonly used in scientific computing. The foreign function interface would be type-safe and automatically handle common marshaling scenarios:


    // Calling Python scientific libraries

    foreign python

        import numpy as np

        import scipy.optimize

        

        function scipy_minimize(objective: Function[Vector[Real64] -> Real64],

                              initial_guess: Vector[Real64]) -> Vector[Real64]

            // Automatic type conversion between FORTRAN and Python

        end function

    end foreign

    

    // Calling C libraries

    foreign c

        library "liblapack"

        

        function dgemm(transa: Character, transb: Character,

                      m: Integer, n: Integer, k: Integer,

                      alpha: Real64, a: Matrix[Real64], lda: Integer,

                      b: Matrix[Real64], ldb: Integer,

                      beta: Real64, c: Matrix[Real64], ldc: Integer) -> Void

        end function

    end foreign


The language would also provide built-in support for common scientific data formats and protocols:


    function load_netcdf_dataset(filename: String) -> Result[Dataset, IOError]

        // Built-in NetCDF support for climate and atmospheric data

        return NetCDF.read(filename)

    end function

    

    function save_hdf5_results(data: SimulationResults, filename: String) -> Result[Void, IOError]

        // Built-in HDF5 support for large scientific datasets

        return HDF5.write(filename, data)

  end function


Development Environment and Tooling


A modern FORTRAN would come with a comprehensive development environment that addresses the unique needs of scientific programming. The language server would provide intelligent code completion that understands mathematical contexts:


    function calculate_reynolds_number(velocity: Velocity, 

                                     characteristic_length: Distance,

                                     kinematic_viscosity: KinematicViscosity) -> Real64

        // IDE would suggest: density, dynamic_viscosity, etc. based on fluid dynamics context

        return velocity * characteristic_length / kinematic_viscosity

  end function


The integrated testing framework would support both traditional unit testing and numerical validation:


    test "orbital_mechanics_conservation_laws"

        let initial_state = StateVector(

            position = Vector3D(7000.0*km, 0.0*km, 0.0*km),

            velocity = Vector3D(0.0*km/s, 7.5*km/s, 0.0*km/s)

        )

        

        let final_state = propagate_orbit(initial_state, 1.0*hours)

        

        // Test conservation of energy

        let initial_energy = orbital_energy(initial_state)

        let final_energy = orbital_energy(final_state)

        

        assert_approximately_equal(initial_energy, final_energy, tolerance=1e-10)

        

        // Test conservation of angular momentum

        let initial_momentum = angular_momentum(initial_state)

        let final_momentum = angular_momentum(final_state)

        

        assert_vector_approximately_equal(initial_momentum, final_momentum, tolerance=1e-10)

  end test


The build system would automatically optimize for the target hardware and provide detailed performance analysis:


    // Build configuration

    build configuration

        target = "x86_64-linux-gnu"

        optimization_level = "aggressive"

        vectorization = "auto"

        parallel_compilation = true

        

        performance_analysis = [

            "memory_usage",

            "cache_efficiency", 

            "vectorization_report",

            "parallel_scaling"

        ]

    end build


Running Example: Climate Model Integration


Throughout this article, we have seen fragments of a climate modeling application. This example demonstrates how modern FORTRAN would handle a complex scientific computing task that requires high performance, numerical accuracy, and maintainable code structure.


The climate model integrates atmospheric dynamics, ocean circulation, and land surface processes. Each component requires different computational approaches: the atmospheric model uses spectral methods for global circulation, the ocean model uses finite differences for local dynamics, and the land surface model uses empirical relationships for ecosystem processes.


The modular design allows each component to be developed and tested independently while ensuring type safety across component boundaries. The units system prevents dimensional analysis errors that are common in multi-physics simulations. The parallel execution model automatically distributes computation across available hardware while maintaining numerical reproducibility.


The error handling system ensures that numerical instabilities or data corruption are detected early and handled gracefully. The debugging support provides detailed information about the state of the simulation at each time step, making it easier to diagnose problems in complex multi-physics interactions.


Conclusion


A modern FORTRAN would represent a significant evolution from its historical roots while maintaining the mathematical expressiveness and performance focus that made the original language successful. The integration of modern type systems, memory safety, structured concurrency, and comprehensive tooling would make scientific computing more productive and reliable.


The language would address the growing complexity of scientific software by providing abstractions that scale from simple calculations to large-scale distributed simulations. The emphasis on correctness through types, contracts, and testing would help scientists build more reliable computational models.


Most importantly, modern FORTRAN would lower the barrier to entry for scientific computing while providing the performance and expressiveness that expert practitioners require. This balance would help ensure that computational science continues to advance rapidly as new researchers can more easily build upon existing work.


COMPLETE RUNNING EXAMPLE: CLIMATE MODEL SIMULATION



    // Complete climate model simulation demonstrating modern FORTRAN features

    

    module climate_model

        export ClimateSimulation, run_simulation, ClimateState, SimulationParameters

        

        import linear_algebra.{Matrix3D, Vector3D, Field2D, Field3D}

        import parallel_computing.{DistributedGrid, parallel_for}

        import units.{Temperature, Pressure, Velocity, Time, Distance}

        import file_io.{NetCDF, HDF5}

        

        type ClimateState = record

            temperature: Field3D[Temperature]

            pressure: Field3D[Pressure]

            humidity: Field3D[Real64]

            wind_velocity: Field3D[Vector3D[Velocity]]

            sea_surface_temperature: Field2D[Temperature]

            soil_moisture: Field2D[Real64]

            timestamp: Time

        end type

        

        type SimulationParameters = record

            grid_resolution: Distance

            time_step: Time

            total_simulation_time: Time

            output_frequency: Time

            initial_conditions_file: String

            output_directory: String

        end type

        

        type ClimateSimulation = record

            parameters: SimulationParameters

            current_state: ClimateState

            grid: DistributedGrid

            physics_modules: PhysicsModules

        end type

        

        type PhysicsModules = record

            atmospheric_dynamics: AtmosphericModel

            ocean_circulation: OceanModel

            land_surface: LandSurfaceModel

            radiation: RadiationModel

        end type

        

        function ClimateSimulation.new(params: SimulationParameters) -> Result[ClimateSimulation, InitializationError]

            match load_initial_conditions(params.initial_conditions_file)

                case Success(initial_state) =>

                    let grid = DistributedGrid.new(params.grid_resolution)

                    let physics = initialize_physics_modules(grid)

                    

                    Success(ClimateSimulation(

                        parameters = params,

                        current_state = initial_state,

                        grid = grid,

                        physics_modules = physics

                    ))

                case Error(load_error) =>

                    Error(InitializationError.InvalidInitialConditions(load_error))

            end match

        end function

        

        function run_simulation(simulation: ClimateSimulation) -> Result[Void, SimulationError]

            let total_steps = (simulation.parameters.total_simulation_time / 

                              simulation.parameters.time_step).to_integer()

            let output_steps = (simulation.parameters.output_frequency / 

                               simulation.parameters.time_step).to_integer()

            

            debug_trace("Starting climate simulation with " + total_steps.to_string() + " time steps")

            

            for step in 1..total_steps

                match advance_time_step(simulation)

                    case Success(_) =>

                        if step % output_steps == 0

                            match save_checkpoint(simulation, step)

                                case Success(_) =>

                                    debug_trace("Saved checkpoint at step " + step.to_string())

                                case Error(save_error) =>

                                    debug_error("Failed to save checkpoint: " + save_error.to_string())

                                    return Error(SimulationError.IOError(save_error))

                            end match

                        end if

                    case Error(physics_error) =>

                        debug_error("Physics calculation failed at step " + step.to_string())

                        return Error(SimulationError.PhysicsError(physics_error))

                end match

                

                // Check for numerical stability

                if not is_numerically_stable(simulation.current_state)

                    debug_error("Numerical instability detected at step " + step.to_string())

                    return Error(SimulationError.NumericalInstability)

                end if

            end for

            

            debug_trace("Climate simulation completed successfully")

            Success(())

        end function

        

        function advance_time_step(simulation: ClimateSimulation) -> Result[Void, PhysicsError]

            let dt = simulation.parameters.time_step

            let state = simulation.current_state

            

            // Atmospheric dynamics using spectral methods

            match simulation.physics_modules.atmospheric_dynamics.update(state, dt)

                case Success(new_atm_state) =>

                    state.temperature = new_atm_state.temperature

                    state.pressure = new_atm_state.pressure

                    state.wind_velocity = new_atm_state.wind_velocity

                case Error(atm_error) =>

                    return Error(PhysicsError.AtmosphericError(atm_error))

            end match

            

            // Ocean circulation using finite difference methods

            match simulation.physics_modules.ocean_circulation.update(state, dt)

                case Success(new_ocean_state) =>

                    state.sea_surface_temperature = new_ocean_state.surface_temperature

                case Error(ocean_error) =>

                    return Error(PhysicsError.OceanError(ocean_error))

            end match

            

            // Land surface processes

            match simulation.physics_modules.land_surface.update(state, dt)

                case Success(new_land_state) =>

                    state.soil_moisture = new_land_state.soil_moisture

                case Error(land_error) =>

                    return Error(PhysicsError.LandSurfaceError(land_error))

            end match

            

            // Radiation calculations

            match simulation.physics_modules.radiation.update(state, dt)

                case Success(radiation_forcing) =>

                    apply_radiation_forcing(state, radiation_forcing)

                case Error(rad_error) =>

                    return Error(PhysicsError.RadiationError(rad_error))

            end match

            

            state.timestamp = state.timestamp + dt

            Success(())

        end function

        

        function apply_radiation_forcing(state: ClimateState, forcing: RadiationForcing) -> Void

            parallel for i in 0..state.temperature.width-1

                for j in 0..state.temperature.height-1

                    for k in 0..state.temperature.depth-1

                        let heating_rate = forcing.longwave[i,j,k] + forcing.shortwave[i,j,k]

                        state.temperature[i,j,k] = state.temperature[i,j,k] + heating_rate

                    end for

                end for

            end parallel

        end function

        

        function is_numerically_stable(state: ClimateState) -> Boolean

            // Check for NaN or infinite values

            if state.temperature.has_invalid_values() or 

               state.pressure.has_invalid_values() or

               state.wind_velocity.has_invalid_values()

                return false

            end if

            

            // Check for physically reasonable ranges

            let min_temp = state.temperature.minimum()

            let max_temp = state.temperature.maximum()

            

            if min_temp < 150.0*kelvin or max_temp > 350.0*kelvin

                return false

            end if

            

            let max_wind_speed = state.wind_velocity.magnitude().maximum()

            if max_wind_speed > 200.0*meters_per_second

                return false

            end if

            

            return true

        end function

        

        function save_checkpoint(simulation: ClimateSimulation, step: Integer) -> Result[Void, IOError]

            let filename = simulation.parameters.output_directory + "/checkpoint_" + 

                          step.to_string() + ".nc"

            

            let dataset = NetCDF.Dataset.new(filename)

            

            match dataset.write_field("temperature", simulation.current_state.temperature)

                case Success(_) => ()

                case Error(write_error) => return Error(write_error)

            end match

            

            match dataset.write_field("pressure", simulation.current_state.pressure)

                case Success(_) => ()

                case Error(write_error) => return Error(write_error)

            end match

            

            match dataset.write_field("wind_velocity", simulation.current_state.wind_velocity)

                case Success(_) => ()

                case Error(write_error) => return Error(write_error)

            end match

            

            match dataset.write_attribute("timestamp", simulation.current_state.timestamp)

                case Success(_) => ()

                case Error(write_error) => return Error(write_error)

            end match

            

            dataset.close()

            Success(())

        end function

        

        function load_initial_conditions(filename: String) -> Result[ClimateState, IOError]

            match NetCDF.read(filename)

                case Success(dataset) =>

                    let temperature = dataset.read_field("temperature")

                    let pressure = dataset.read_field("pressure")

                    let humidity = dataset.read_field("humidity")

                    let wind_velocity = dataset.read_field("wind_velocity")

                    let sst = dataset.read_field("sea_surface_temperature")

                    let soil_moisture = dataset.read_field("soil_moisture")

                    

                    Success(ClimateState(

                        temperature = temperature,

                        pressure = pressure,

                        humidity = humidity,

                        wind_velocity = wind_velocity,

                        sea_surface_temperature = sst,

                        soil_moisture = soil_moisture,

                        timestamp = 0.0*seconds

                    ))

                case Error(read_error) =>

                    Error(read_error)

            end match

        end function

        

        function initialize_physics_modules(grid: DistributedGrid) -> PhysicsModules

            PhysicsModules(

                atmospheric_dynamics = AtmosphericModel.new(grid),

                ocean_circulation = OceanModel.new(grid),

                land_surface = LandSurfaceModel.new(grid),

                radiation = RadiationModel.new(grid)

            )

        end function

    end module

    

    // Main program demonstrating the climate simulation

    program climate_simulation_main

        import climate_model.{ClimateSimulation, SimulationParameters, run_simulation}

        import units.{kilometers, hours, days, kelvin}

        

        function main() -> Result[Void, ProgramError]

            let params = SimulationParameters(

                grid_resolution = 100.0*kilometers,

                time_step = 1.0*hours,

                total_simulation_time = 30.0*days,

                output_frequency = 6.0*hours,

                initial_conditions_file = "initial_conditions.nc",

                output_directory = "simulation_output"

            )

            

            match ClimateSimulation.new(params)

                case Success(simulation) =>

                    match run_simulation(simulation)

                        case Success(_) =>

                            print("Climate simulation completed successfully")

                            Success(())

                        case Error(sim_error) =>

                            print("Simulation failed: " + sim_error.to_string())

                            Error(ProgramError.SimulationFailed(sim_error))

                    end match

                case Error(init_error) =>

                    print("Failed to initialize simulation: " + init_error.to_string())

                    Error(ProgramError.InitializationFailed(init_error))

            end match

        end function

    end program


This complete example demonstrates all the key features of modern FORTRAN discussed in the article. The code shows proper error handling with Result types, type safety with units, parallel computation, modular design, and comprehensive documentation. The climate simulation represents a realistic scientific computing application that benefits from all the modern language features while maintaining the mathematical expressiveness that makes FORTRAN suitable for scientific work.

No comments: