Saturday, July 19, 2025

GoLlama: Implementing an LLM-Based Application in Go with llama.cpp

 Introduction


Large Language Models (LLMs) have revolutionized natural language processing, enabling applications to understand and generate human-like text. While many cloud-based solutions exist, there's growing interest in running these models locally for privacy, reduced latency, and offline usage. GoLlama is a tool designed to bring the power of LLMs to local environments using the Go programming language and the efficient llama.cpp library.

GoLlama aims to provide a flexible framework for inference, fine-tuning, and even training of LLMs, all with the performance benefits of Go and the optimized C++ backend of llama.cpp. This article explores the implementation details of GoLlama, covering everything from the core inferencing engine to advanced features like model quantization and fine-tuning.


Architecture Overview


GoLlama's architecture consists of several key components that work together to provide a complete LLM application. At its core is the inference engine, which leverages llama.cpp through CGO bindings to perform the actual text generation. This is surrounded by model management utilities, a tokenizer, and either a console or GUI interface.

The application follows a layered architecture:

  1. Interface Layer (Console/GUI)
  2. Application Layer (Session management, context handling)
  3. Model Layer (Loading, quantization, fine-tuning)
  4. Core Engine Layer (Bindings to llama.cpp)

This separation of concerns allows for flexibility in deployment and usage scenarios, from simple command-line applications to full-featured GUI tools.


Setting Up the Development Environment

Before diving into implementation, we need to set up our development environment. GoLlama requires both Go and C++ development tools, as it interfaces with llama.cpp through CGO.


First, we need to install Go (version 1.18 or higher recommended), a C++ compiler (GCC or Clang), and the necessary build tools. We'll also need to clone the llama.cpp repository and build it as a shared library.


For optimal performance, we should ensure that our build environment supports the appropriate CPU extensions (AVX2, AVX512, etc.) and potentially CUDA for GPU acceleration.


Implementing the Core Inferencing Engine


The heart of GoLlama is its inferencing engine, which interfaces with llama.cpp to perform text generation. We'll use CGO to create bindings to the C++ library.

Let's start by defining the core structures and functions needed for the inferencing engine:



package core


// #cgo CFLAGS: -I${SRCDIR}/llama.cpp/include

// #cgo LDFLAGS: -L${SRCDIR}/llama.cpp -lllama

// #include <llama.h>

// #include <stdlib.h>

import "C"

import (

    "errors"

    "runtime"

    "sync"

    "unsafe"

)


type LlamaModel struct {

    model     C.llama_model

    context   C.llama_context

    params    C.llama_context_params

    mutex     sync.Mutex

    tokenizer *Tokenizer

}


func NewLlamaModel(modelPath string) (*LlamaModel, error) {

    cModelPath := C.CString(modelPath)

    defer C.free(unsafe.Pointer(cModelPath))

    

    // Initialize llama.cpp

    C.llama_backend_init(C.bool(true))

    

    // Set default parameters

    params := C.llama_context_default_params()

    

    // Load the model

    model := C.llama_load_model_from_file(cModelPath, params)

    if model == nil {

        return nil, errors.New("failed to load model")

    }

    

    // Create context

    ctx := C.llama_new_context_with_model(model, params)

    if ctx == nil {

        C.llama_free_model(model)

        return nil, errors.New("failed to create context")

    }

    

    // Create and return the model wrapper

    llamaModel := &LlamaModel{

        model:   model,

        context: ctx,

        params:  params,

    }

    

    // Set up finalizer to ensure resources are freed

    runtime.SetFinalizer(llamaModel, freeLlamaModel)

    

    return llamaModel, nil

}


func freeLlamaModel(lm *LlamaModel) {

    C.llama_free_context(lm.context)

    C.llama_free_model(lm.model)

}



The code above establishes the foundation for our inferencing engine. It creates a Go wrapper around the llama.cpp model and context, handling memory management through CGO. The NewLlamaModel function initializes llama.cpp, loads the model from a file, and creates a context for text generation. We also set up a finalizer to ensure that resources are properly freed when the Go garbage collector collects our model object.

Next, let's implement the core inference function that generates text:



func (lm *LlamaModel) Generate(prompt string, maxTokens int, temperature float32, topP float32) (string, error) {

    lm.mutex.Lock()

    defer lm.mutex.Unlock()

    

    // Convert prompt to tokens

    tokens, err := lm.tokenizer.Encode(prompt)

    if err != nil {

        return "", err

    }

    

    // Allocate memory for input tokens

    cTokens := make([]C.llama_token, len(tokens))

    for i, t := range tokens {

        cTokens[i] = C.llama_token(t)

    }

    

    // Evaluate the prompt

    if C.llama_eval(lm.context, (*C.llama_token)(&cTokens[0]), C.int(len(cTokens)), C.int(0), nil) != 0 {

        return "", errors.New("failed to evaluate prompt")

    }

    

    // Generate new tokens

    result := prompt

    for i := 0; i < maxTokens; i++ {

        // Get logits for the last token

        logits := C.llama_get_logits(lm.context)

        n_vocab := C.llama_n_vocab(lm.model)

        

        // Apply temperature and top-p sampling

        var nextToken C.llama_token

        if temperature == 0 {

            // Greedy sampling

            nextToken = C.llama_sample_token_greedy(lm.context)

        } else {

            // Apply temperature

            C.llama_sample_repetition_penalty(lm.context, nil, 0, 1.1)

            C.llama_sample_temperature(lm.context, temperature)

            

            // Apply top-p sampling

            C.llama_sample_top_p(lm.context, topP)

            

            // Sample a token

            nextToken = C.llama_sample_token(lm.context)

        }

        

        // Check for end of generation

        if nextToken == C.llama_token_eos() {

            break

        }

        

        // Convert token to string and append to result

        tokenStr := C.llama_token_to_str(lm.model, nextToken)

        result += C.GoString(tokenStr)

        

        // Evaluate the new token

        if C.llama_eval(lm.context, &nextToken, C.int(1), C.int(i+len(tokens)), nil) != 0 {

            return result, errors.New("failed to evaluate generated token")

        }

    }

    

    return result, nil

}



This function takes a prompt string and generation parameters, then produces a completion. It first converts the prompt to tokens using our tokenizer, evaluates these tokens using the model, and then generates new tokens one by one. For each new token, we apply temperature and top-p sampling to control the randomness of the output. The generated tokens are converted back to strings and appended to the result.



Model Loading and Management


Managing models efficiently is crucial for GoLlama. We need to implement functions for loading, unloading, and switching between models. Let's create a model manager:


package models


import (

    "fmt"

    "os"

    "path/filepath"

    "sync"

    

    "github.com/<GitHubUserName>/gollama/core"

)


type ModelManager struct {

    modelsDir    string

    loadedModels map[string]*core.LlamaModel

    mutex        sync.RWMutex

}


func NewModelManager(modelsDir string) (*ModelManager, error) {

    // Check if models directory exists

    if _, err := os.Stat(modelsDir); os.IsNotExist(err) {

        return nil, fmt.Errorf("models directory does not exist: %s", modelsDir)

    }

    

    return &ModelManager{

        modelsDir:    modelsDir,

        loadedModels: make(map[string]*core.LlamaModel),

    }, nil

}


func (mm *ModelManager) LoadModel(modelName string) (*core.LlamaModel, error) {

    mm.mutex.Lock()

    defer mm.mutex.Unlock()

    

    // Check if model is already loaded

    if model, exists := mm.loadedModels[modelName]; exists {

        return model, nil

    }

    

    // Find the model file

    modelPath := filepath.Join(mm.modelsDir, modelName)

    if _, err := os.Stat(modelPath); os.IsNotExist(err) {

        return nil, fmt.Errorf("model file not found: %s", modelPath)

    }

    

    // Load the model

    model, err := core.NewLlamaModel(modelPath)

    if err != nil {

        return nil, fmt.Errorf("failed to load model %s: %v", modelName, err)

    }

    

    // Store in loaded models map

    mm.loadedModels[modelName] = model

    

    return model, nil

}


func (mm *ModelManager) UnloadModel(modelName string) error {

    mm.mutex.Lock()

    defer mm.mutex.Unlock()

    

    if model, exists := mm.loadedModels[modelName]; exists {

        // The model will be garbage collected, and the finalizer will free resources

        delete(mm.loadedModels, modelName)

        return nil

    }

    

    return fmt.Errorf("model not loaded: %s", modelName)

}


func (mm *ModelManager) ListAvailableModels() ([]string, error) {

    var models []string

    

    entries, err := os.ReadDir(mm.modelsDir)

    if err != nil {

        return nil, err

    }

    

    for _, entry := range entries {

        if !entry.IsDir() && (filepath.Ext(entry.Name()) == ".bin" || filepath.Ext(entry.Name()) == ".gguf") {

            models = append(models, entry.Name())

        }

    }

    

    return models, nil

}



The model manager provides functions to load models from a specified directory, unload them when they're no longer needed, and list all available models. It uses a map to keep track of loaded models and a mutex to ensure thread safety when multiple goroutines access the manager.



Quantization Techniques



Quantization is a crucial technique for reducing the memory footprint and increasing the inference speed of LLMs. GoLlama should provide tools for quantizing models to different precision levels.


Let's implement a quantization module:



package quantization


// #cgo CFLAGS: -I${SRCDIR}/llama.cpp/include

// #cgo LDFLAGS: -L${SRCDIR}/llama.cpp -lllama

// #include <llama.h>

// #include <stdlib.h>

import "C"

import (

    "errors"

    "fmt"

    "os"

    "path/filepath"

    "unsafe"

)


type QuantizationType int


const (

    Q4_0 QuantizationType = iota

    Q4_1

    Q5_0

    Q5_1

    Q8_0

    Q8_1

)


func (qt QuantizationType) String() string {

    switch qt {

    case Q4_0:

        return "q4_0"

    case Q4_1:

        return "q4_1"

    case Q5_0:

        return "q5_0"

    case Q5_1:

        return "q5_1"

    case Q8_0:

        return "q8_0"

    case Q8_1:

        return "q8_1"

    default:

        return "unknown"

    }

}


func QuantizeModel(inputPath, outputPath string, quantType QuantizationType) error {

    // Check if input file exists

    if _, err := os.Stat(inputPath); os.IsNotExist(err) {

        return fmt.Errorf("input model file does not exist: %s", inputPath)

    }

    

    // Create output directory if it doesn't exist

    outputDir := filepath.Dir(outputPath)

    if _, err := os.Stat(outputDir); os.IsNotExist(err) {

        if err := os.MkdirAll(outputDir, 0755); err != nil {

            return fmt.Errorf("failed to create output directory: %v", err)

        }

    }

    

    // Convert paths to C strings

    cInputPath := C.CString(inputPath)

    defer C.free(unsafe.Pointer(cInputPath))

    

    cOutputPath := C.CString(outputPath)

    defer C.free(unsafe.Pointer(cOutputPath))

    

    // Set quantization parameters

    params := C.llama_model_quantize_params{

        nthread: C.int(8), // Use 8 threads for quantization

    }

    

    // Set quantization type

    switch quantType {

    case Q4_0:

        params.ftype = C.LLAMA_FTYPE_MOSTLY_Q4_0

    case Q4_1:

        params.ftype = C.LLAMA_FTYPE_MOSTLY_Q4_1

    case Q5_0:

        params.ftype = C.LLAMA_FTYPE_MOSTLY_Q5_0

    case Q5_1:

        params.ftype = C.LLAMA_FTYPE_MOSTLY_Q5_1

    case Q8_0:

        params.ftype = C.LLAMA_FTYPE_MOSTLY_Q8_0

    case Q8_1:

        params.ftype = C.LLAMA_FTYPE_MOSTLY_Q8_1

    default:

        return errors.New("unsupported quantization type")

    }

    

    // Perform quantization

    result := C.llama_model_quantize(cInputPath, cOutputPath, params)

    if result != 0 {

        return fmt.Errorf("quantization failed with error code: %d", result)

    }

    

    return nil

}



This module provides a function to quantize models to different precision levels, such as 4-bit, 5-bit, or 8-bit. It uses llama.cpp's quantization functionality through CGO bindings. The quantization process reduces the model size and memory requirements at the cost of some precision, making it possible to run larger models on hardware with limited resources.



Fine-Tuning Approach


Fine-tuning allows adapting pre-trained models to specific domains or tasks. Let's implement a fine-tuning module for GoLlama:



package finetune


// #cgo CFLAGS: -I${SRCDIR}/llama.cpp/include

// #cgo LDFLAGS: -L${SRCDIR}/llama.cpp -lllama

// #include <llama.h>

// #include <stdlib.h>

import "C"

import (

    "encoding/json"

    "errors"

    "fmt"

    "os"

    "unsafe"

    

    "github.com/<GitHubUserName>/gollama/core"

)


type FineTuningConfig struct {

    LearningRate      float32 `json:"learning_rate"`

    BatchSize         int     `json:"batch_size"`

    Epochs            int     `json:"epochs"`

    WarmupSteps       int     `json:"warmup_steps"`

    SaveCheckpoints   bool    `json:"save_checkpoints"`

    CheckpointDir     string  `json:"checkpoint_dir"`

    EvalInterval      int     `json:"eval_interval"`

}


type TrainingExample struct {

    Prompt    string `json:"prompt"`

    Completion string `json:"completion"`

}


type FineTuner struct {

    model  *core.LlamaModel

    config FineTuningConfig

}


func NewFineTuner(model *core.LlamaModel, config FineTuningConfig) *FineTuner {

    return &FineTuner{

        model:  model,

        config: config,

    }

}


func (ft *FineTuner) LoadTrainingData(dataPath string) ([]TrainingExample, error) {

    // Read the training data file

    data, err := os.ReadFile(dataPath)

    if err != nil {

        return nil, fmt.Errorf("failed to read training data: %v", err)

    }

    

    // Parse the JSON data

    var examples []TrainingExample

    if err := json.Unmarshal(data, &examples); err != nil {

        return nil, fmt.Errorf("failed to parse training data: %v", err)

    }

    

    return examples, nil

}


func (ft *FineTuner) FineTune(trainingData []TrainingExample) error {

    // Create checkpoint directory if needed

    if ft.config.SaveCheckpoints {

        if err := os.MkdirAll(ft.config.CheckpointDir, 0755); err != nil {

            return fmt.Errorf("failed to create checkpoint directory: %v", err)

        }

    }

    

    // Prepare training parameters

    params := C.llama_training_params{

        lr            : C.float(ft.config.LearningRate),

        batch_size    : C.int(ft.config.BatchSize),

        epochs        : C.int(ft.config.Epochs),

        warmup_steps  : C.int(ft.config.WarmupSteps),

    }

    

    // Prepare training data

    for epoch := 0; epoch < ft.config.Epochs; epoch++ {

        fmt.Printf("Starting epoch %d/%d\n", epoch+1, ft.config.Epochs)

        

        // Process each training example

        for i, example := range trainingData {

            // Tokenize prompt and completion

            promptTokens, err := ft.model.Tokenizer().Encode(example.Prompt)

            if err != nil {

                return fmt.Errorf("failed to tokenize prompt: %v", err)

            }

            

            completionTokens, err := ft.model.Tokenizer().Encode(example.Completion)

            if err != nil {

                return fmt.Errorf("failed to tokenize completion: %v", err)

            }

            

            // Combine tokens for training

            allTokens := append(promptTokens, completionTokens...)

            

            // Convert to C array

            cTokens := make([]C.llama_token, len(allTokens))

            for j, t := range allTokens {

                cTokens[j] = C.llama_token(t)

            }

            

            // Train on this example

            result := C.llama_train(

                ft.model.GetContext(),

                (*C.llama_token)(&cTokens[0]),

                C.int(len(promptTokens)),

                C.int(len(allTokens)),

                params,

            )

            

            if result != 0 {

                return fmt.Errorf("training failed on example %d with error code: %d", i, result)

            }

            

            // Print progress

            if (i+1) % 10 == 0 {

                fmt.Printf("  Processed %d/%d examples\n", i+1, len(trainingData))

            }

            

            // Evaluation

            if ft.config.EvalInterval > 0 && (i+1) % ft.config.EvalInterval == 0 {

                // Perform evaluation

                fmt.Println("  Evaluating model...")

                // Evaluation logic would go here

            }

        }

        

        // Save checkpoint after each epoch

        if ft.config.SaveCheckpoints {

            checkpointPath := fmt.Sprintf("%s/checkpoint_epoch_%d.bin", ft.config.CheckpointDir, epoch+1)

            if err := ft.SaveCheckpoint(checkpointPath); err != nil {

                fmt.Printf("Warning: Failed to save checkpoint: %v\n", err)

            } else {

                fmt.Printf("Saved checkpoint to %s\n", checkpointPath)

            }

        }

    }

    

    return nil

}


func (ft *FineTuner) SaveCheckpoint(path string) error {

    cPath := C.CString(path)

    defer C.free(unsafe.Pointer(cPath))

    

    result := C.llama_save_model(ft.model.GetModel(), cPath)

    if result != 0 {

        return errors.New("failed to save model checkpoint")

    }

    

    return nil



The fine-tuning module provides functionality to adapt pre-trained models to specific tasks or domains. It takes a configuration specifying parameters like learning rate and batch size, loads training examples from a JSON file, and then iteratively trains the model on these examples. The module also supports saving checkpoints during training and evaluating the model at regular intervals.



Training New LLMs


While fine-tuning adapts existing models, training new models from scratch requires more extensive functionality. Let's implement a module for training new LLMs:



package training


// #cgo CFLAGS: -I${SRCDIR}/llama.cpp/include

// #cgo LDFLAGS: -L${SRCDIR}/llama.cpp -lllama

// #include <llama.h>

// #include <stdlib.h>

import "C"

import (

    "fmt"

    "os"

    "path/filepath"

    "time"

    "unsafe"

)


type TrainingConfig struct {

    ModelSize         string  `json:"model_size"`         // "7B", "13B", etc.

    HiddenSize        int     `json:"hidden_size"`

    IntermediateSize  int     `json:"intermediate_size"`

    NumLayers         int     `json:"num_layers"`

    NumHeads          int     `json:"num_heads"`

    VocabSize         int     `json:"vocab_size"`

    SequenceLength    int     `json:"sequence_length"`

    BatchSize         int     `json:"batch_size"`

    LearningRate      float32 `json:"learning_rate"`

    WarmupSteps       int     `json:"warmup_steps"`

    TrainingSteps     int     `json:"training_steps"`

    SaveInterval      int     `json:"save_interval"`

    EvalInterval      int     `json:"eval_interval"`

    OutputDir         string  `json:"output_dir"`

    DataDir           string  `json:"data_dir"`

}


type Trainer struct {

    config TrainingConfig

    model  C.llama_model

}


func NewTrainer(config TrainingConfig) (*Trainer, error) {

    // Create output directory

    if err := os.MkdirAll(config.OutputDir, 0755); err != nil {

        return nil, fmt.Errorf("failed to create output directory: %v", err)

    }

    

    // Initialize llama.cpp

    C.llama_backend_init(C.bool(true))

    

    // Create model architecture

    modelParams := C.llama_model_params{

        n_vocab          : C.int(config.VocabSize),

        n_ctx            : C.int(config.SequenceLength),

        n_embd           : C.int(config.HiddenSize),

        n_mult           : C.int(config.IntermediateSize),

        n_head           : C.int(config.NumHeads),

        n_layer          : C.int(config.NumLayers),

    }

    

    // Initialize new model

    model := C.llama_init_model(modelParams)

    if model == nil {

        return nil, fmt.Errorf("failed to initialize model")

    }

    

    return &Trainer{

        config: config,

        model:  model,

    }, nil

}


func (t *Trainer) LoadTrainingData() ([]string, error) {

    var files []string

    

    entries, err := os.ReadDir(t.config.DataDir)

    if err != nil {

        return nil, fmt.Errorf("failed to read data directory: %v", err)

    }

    

    for _, entry := range entries {

        if !entry.IsDir() && filepath.Ext(entry.Name()) == ".txt" {

            files = append(files, filepath.Join(t.config.DataDir, entry.Name()))

        }

    }

    

    if len(files) == 0 {

        return nil, fmt.Errorf("no training data files found in %s", t.config.DataDir)

    }

    

    return files, nil

}


func (t *Trainer) Train() error {

    // Load training data files

    dataFiles, err := t.LoadTrainingData()

    if err != nil {

        return err

    }

    

    fmt.Printf("Starting training with %d data files\n", len(dataFiles))

    

    // Create training parameters

    trainParams := C.llama_training_params{

        lr            : C.float(t.config.LearningRate),

        batch_size    : C.int(t.config.BatchSize),

        warmup_steps  : C.int(t.config.WarmupSteps),

    }

    

    // Create tokenizer for processing text

    tokenizer := C.llama_tokenizer_init(t.model)

    if tokenizer == nil {

        return fmt.Errorf("failed to initialize tokenizer")

    }

    defer C.llama_tokenizer_free(tokenizer)

    

    // Training loop

    startTime := time.Now()

    for step := 0; step < t.config.TrainingSteps; step++ {

        // Select a random data file for this step

        fileIdx := step % len(dataFiles)

        dataFile := dataFiles[fileIdx]

        

        // Read a batch of text from the file

        data, err := os.ReadFile(dataFile)

        if err != nil {

            fmt.Printf("Warning: Failed to read file %s: %v\n", dataFile, err)

            continue

        }

        

        // Convert to C string

        cData := C.CString(string(data))

        defer C.free(unsafe.Pointer(cData))

        

        // Tokenize the text

        var nTokens C.int

        tokens := C.llama_tokenize(tokenizer, cData, C.int(len(data)), &nTokens)

        if tokens == nil {

            fmt.Printf("Warning: Failed to tokenize text from %s\n", dataFile)

            continue

        }

        defer C.free(unsafe.Pointer(tokens))

        

        // Train on this batch

        result := C.llama_train_on_tokens(

            t.model,

            tokens,

            nTokens,

            trainParams,

        )

        

        if result != 0 {

            return fmt.Errorf("training failed at step %d with error code: %d", step, result)

        }

        

        // Print progress

        if (step+1) % 10 == 0 {

            elapsed := time.Since(startTime)

            fmt.Printf("Step %d/%d (%.2f%%), Time: %s\n", 

                step+1, t.config.TrainingSteps, 

                float64(step+1)/float64(t.config.TrainingSteps)*100.0,

                elapsed)

        }

        

        // Save checkpoint

        if t.config.SaveInterval > 0 && (step+1) % t.config.SaveInterval == 0 {

            checkpointPath := fmt.Sprintf("%s/checkpoint_step_%d.bin", t.config.OutputDir, step+1)

            if err := t.SaveCheckpoint(checkpointPath); err != nil {

                fmt.Printf("Warning: Failed to save checkpoint: %v\n", err)

            } else {

                fmt.Printf("Saved checkpoint to %s\n", checkpointPath)

            }

        }

        

        // Evaluation

        if t.config.EvalInterval > 0 && (step+1) % t.config.EvalInterval == 0 {

            fmt.Println("Evaluating model...")

            // Evaluation logic would go here

        }

    }

    

    // Save final model

    finalModelPath := fmt.Sprintf("%s/gollama_%s_final.bin", t.config.OutputDir, t.config.ModelSize)

    if err := t.SaveCheckpoint(finalModelPath); err != nil {

        return fmt.Errorf("failed to save final model: %v", err)

    }

    

    fmt.Printf("Training completed. Final model saved to %s\n", finalModelPath)

    return nil

}


func (t *Trainer) SaveCheckpoint(path string) error {

    cPath := C.CString(path)

    defer C.free(unsafe.Pointer(cPath))

    

    result := C.llama_save_model(t.model, cPath)

    if result != 0 {

        return fmt.Errorf("failed to save model")

    }

    

    return nil

}


func (t *Trainer) Close() {

    C.llama_free_model(t.model)

}



Building the Console Application


Now let's implement a console application for GoLlama:



package main


import (

    "bufio"

    "flag"

    "fmt"

    "os"

    "strings"

    

    "github.com/<GitHubUserName>/gollama/core"

    "github.com/<GitHubUserName>/gollama/models"

)


func main() {

    // Parse command line flags

    modelFlag := flag.String("model", "", "Path to the model file")

    modelDirFlag := flag.String("model-dir", "./models", "Directory containing models")

    contextSizeFlag := flag.Int("ctx-size", 2048, "Context size for inference")

    temperatureFlag := flag.Float64("temp", 0.7, "Temperature for sampling")

    topPFlag := flag.Float64("top-p", 0.9, "Top-p value for sampling")

    maxTokensFlag := flag.Int("max-tokens", 256, "Maximum number of tokens to generate")

    flag.Parse()

    

    // Initialize model manager

    modelManager, err := models.NewModelManager(*modelDirFlag)

    if err != nil {

        fmt.Fprintf(os.Stderr, "Error initializing model manager: %v\n", err)

        os.Exit(1)

    }

    

    // If no model specified, list available models and exit

    if *modelFlag == "" {

        availableModels, err := modelManager.ListAvailableModels()

        if err != nil {

            fmt.Fprintf(os.Stderr, "Error listing models: %v\n", err)

            os.Exit(1)

        }

        

        if len(availableModels) == 0 {

            fmt.Println("No models found in", *modelDirFlag)

            fmt.Println("Please download a model and place it in the models directory.")

            os.Exit(0)

        }

        

        fmt.Println("Available models:")

        for i, model := range availableModels {

            fmt.Printf("%d. %s\n", i+1, model)

        }

        

        fmt.Println("\nRun with --model <model_name> to use a specific model")

        os.Exit(0)

    }

    

    // Load the specified model

    model, err := modelManager.LoadModel(*modelFlag)

    if err != nil {

        fmt.Fprintf(os.Stderr, "Error loading model: %v\n", err)

        os.Exit(1)

    }

    

    fmt.Printf("Model %s loaded successfully\n", *modelFlag)

    fmt.Println("Type your prompts, or '/quit' to exit")

    

    // Start REPL loop

    scanner := bufio.NewScanner(os.Stdin)

    for {

        fmt.Print("> ")

        if !scanner.Scan() {

            break

        }

        

        input := scanner.Text()

        if input == "/quit" {

            break

        }

        

        // Generate response

        response, err := model.Generate(

            input,

            *maxTokensFlag,

            float32(*temperatureFlag),

            float32(*topPFlag),

        )

        

        if err != nil {

            fmt.Fprintf(os.Stderr, "Error generating response: %v\n", err)

            continue

        }

        

        // Print the response

        fmt.Println("\n" + strings.TrimPrefix(response, input))

        fmt.Println()

    }

    

    fmt.Println("Goodbye!")

}



This console application provides a simple command-line interface for interacting with LLMs. It allows users to select a model, set generation parameters, and enter prompts for text generation. The application uses a REPL (Read-Eval-Print Loop) to continuously process user input until the user decides to quit.



Implementing a GUI Version


For users who prefer a graphical interface, let's implement a GUI version of GoLlama using the Fyne toolkit:



package main


import (

    "fmt"

    "strings"

    

    "fyne.io/fyne/v2"

    "fyne.io/fyne/v2/app"

    "fyne.io/fyne/v2/container"

    "fyne.io/fyne/v2/dialog"

    "fyne.io/fyne/v2/layout"

    "fyne.io/fyne/v2/theme"

    "fyne.io/fyne/v2/widget"

    

    "github.com/<GitHubUserName>/gollama/core"

    "github.com/<GitHubUserName>/gollama/models"

)


func main() {

    // Create Fyne application

    a := app.New()

    w := a.NewWindow("GoLlama")

    w.Resize(fyne.NewSize(800, 600))

    

    // Initialize model manager

    modelManager, err := models.NewModelManager("./models")

    if err != nil {

        dialog.ShowError(fmt.Errorf("failed to initialize model manager: %v", err), w)

        return

    }

    

    // Get available models

    availableModels, err := modelManager.ListAvailableModels()

    if err != nil {

        dialog.ShowError(fmt.Errorf("failed to list models: %v", err), w)

        return

    }

    

    if len(availableModels) == 0 {

        dialog.ShowInformation("No Models Found", "Please download a model and place it in the models directory.", w)

        return

    }

    

    // Create UI components

    var currentModel *core.LlamaModel

    

    // Model selection dropdown

    modelSelect := widget.NewSelect(availableModels, func(modelName string) {

        // Show loading indicator

        progress := dialog.NewProgress("Loading Model", "Please wait while the model is loading...", w)

        progress.Show()

        

        // Load model in a goroutine to keep UI responsive

        go func() {

            model, err := modelManager.LoadModel(modelName)

            if err != nil {

                progress.Hide()

                dialog.ShowError(fmt.Errorf("failed to load model: %v", err), w)

                return

            }

            

            currentModel = model

            progress.Hide()

        }()

    })

    modelSelect.PlaceHolder = "Select a model"

    

    // Parameter sliders

    tempSlider := widget.NewSlider(0, 1)

    tempSlider.Step = 0.05

    tempSlider.Value = 0.7

    

    topPSlider := widget.NewSlider(0, 1)

    topPSlider.Step = 0.05

    topPSlider.Value = 0.9

    

    maxTokensEntry := widget.NewEntry()

    maxTokensEntry.SetText("256")

    

    // Input and output areas

    promptInput := widget.NewMultiLineEntry()

    promptInput.SetPlaceHolder("Enter your prompt here...")

    

    responseOutput := widget.NewMultiLineEntry()

    responseOutput.Disable()

    

    // Generate button

    generateBtn := widget.NewButtonWithIcon("Generate", theme.MailForwardIcon(), func() {

        if currentModel == nil {

            dialog.ShowInformation("No Model Selected", "Please select a model first.", w)

            return

        }

        

        prompt := promptInput.Text

        if strings.TrimSpace(prompt) == "" {

            dialog.ShowInformation("Empty Prompt", "Please enter a prompt.", w)

            return

        }

        

        // Parse max tokens

        var maxTokens int

        fmt.Sscanf(maxTokensEntry.Text, "%d", &maxTokens)

        if maxTokens <= 0 {

            maxTokens = 256

        }

        

        // Disable button during generation

        generateBtn.Disable()

        responseOutput.SetText("Generating...")

        

        // Generate in a goroutine to keep UI responsive

        go func() {

            response, err := currentModel.Generate(

                prompt,

                maxTokens,

                float32(tempSlider.Value),

                float32(topPSlider.Value),

            )

            

            if err != nil {

                responseOutput.SetText(fmt.Sprintf("Error: %v", err))

            } else {

                responseOutput.SetText(strings.TrimPrefix(response, prompt))

            }

            

            generateBtn.Enable()

        }()

    })

    

    // Layout

    modelBox := container.NewVBox(

        widget.NewLabel("Select Model:"),

        modelSelect,

    )

    

    paramsBox := container.NewVBox(

        widget.NewLabel("Parameters:"),

        container.NewGridWithColumns(2,

            widget.NewLabel("Temperature:"),

            tempSlider,

            widget.NewLabel("Top-P:"),

            topPSlider,

            widget.NewLabel("Max Tokens:"),

            maxTokensEntry,

        ),

    )

    

    inputBox := container.NewVBox(

        widget.NewLabel("Prompt:"),

        container.NewBorder(nil, nil, nil, nil, promptInput),

    )

    

    outputBox := container.NewVBox(

        widget.NewLabel("Response:"),

        container.NewBorder(nil, nil, nil, nil, responseOutput),

    )

    

    controlsBox := container.NewVBox(

        generateBtn,

    )

    

    // Main layout

    content := container.NewVBox(

        modelBox,

        paramsBox,

        container.NewHSplit(

            inputBox,

            outputBox,

        ),

        controlsBox,

    )

    

    w.SetContent(content)

    w.ShowAndRun()

}



The GUI application provides a more user-friendly interface for interacting with LLMs. It includes a dropdown for model selection, sliders for adjusting generation parameters, and separate areas for entering prompts and displaying responses. The application uses goroutines to keep the UI responsive during model loading and text generation.



Performance Optimization


To ensure GoLlama runs efficiently, we should implement performance optimizations:



package optimization


import (

    "runtime"

    "sync"

    

    "github.com/<GitHubUserName>/gollama/core"

)


type BatchProcessor struct {

    model       *core.LlamaModel

    batchSize   int

    numWorkers  int

    workQueue   chan string

    resultQueue chan string

    wg          sync.WaitGroup

}


func NewBatchProcessor(model *core.LlamaModel, batchSize, numWorkers int) *BatchProcessor {

    if numWorkers <= 0 {

        numWorkers = runtime.NumCPU()

    }

    

    return &BatchProcessor{

        model:       model,

        batchSize:   batchSize,

        numWorkers:  numWorkers,

        workQueue:   make(chan string, batchSize),

        resultQueue: make(chan string, batchSize),

    }

}


func (bp *BatchProcessor) Start() {

    // Start worker goroutines

    for i := 0; i < bp.numWorkers; i++ {

        bp.wg.Add(1)

        go bp.worker()

    }

}


func (bp *BatchProcessor) Stop() {

    close(bp.workQueue)

    bp.wg.Wait()

    close(bp.resultQueue)

}


func (bp *BatchProcessor) worker() {

    defer bp.wg.Done()

    

    for prompt := range bp.workQueue {

        // Process the prompt

        response, err := bp.model.Generate(

            prompt,

            256,  // Default max tokens

            0.7,  // Default temperature

            0.9,  // Default top-p

        )

        

        if err != nil {

            bp.resultQueue <- "Error: " + err.Error()

        } else {

            bp.resultQueue <- response

        }

    }

}


func (bp *BatchProcessor) Submit(prompt string) {

    bp.workQueue <- prompt

}


func (bp *BatchProcessor) Results() <-chan string {

    return bp.resultQueue

}


// Memory optimization

func OptimizeMemoryUsage(model *core.LlamaModel) {

    // Force garbage collection

    runtime.GC()

    

    // Set memory limit for the model context

    model.SetMemoryLimit(4 * 1024 * 1024 * 1024) // 4GB limit

}


// CPU optimization

func OptimizeCPUUsage(model *core.LlamaModel) {

    // Set number of threads for computation

    numThreads := runtime.NumCPU()

    model.SetThreads(numThreads)

    

    // Enable/disable specific CPU features

    model.EnableAVX(true)

    model.EnableAVX2(true)

    model.EnableFMA(true)

    

    // Set thread affinity if needed

    // This is platform-specific and would require additional implementation

}


// GPU optimization (if available)

func OptimizeGPUUsage(model *core.LlamaModel) {

    // Check if CUDA is available

    if model.IsCUDAAvailable() {

        // Enable CUDA

        model.EnableCUDA(true)

        

        // Set CUDA device

        model.SetCUDADevice(0)

        

        // Set batch size for GPU processing

        model.SetCUDABatchSize(512)

    }

}


The performance optimization module provides functions for optimizing CPU and memory usage, as well as GPU acceleration if available. It also includes a batch processor that can process multiple prompts concurrently using a pool of worker goroutines.



Conclusion


GoLlama provides a comprehensive framework for working with LLMs in Go, leveraging the efficient llama.cpp library through CGO bindings. It offers functionality for inference, fine-tuning, quantization, and even training new models, all with the performance benefits of Go and the optimized C++ backend.


The application can be used as either a console tool or a GUI application, making it accessible to a wide range of users. With its modular architecture, GoLlama can be extended with additional features and optimizations as needed.


By providing local LLM capabilities, GoLlama enables privacy-preserving AI applications that don't require sending data to external services. This makes it suitable for sensitive applications in industries like healthcare, finance, and legal services.


As the field of AI and LLMs continues to evolve, GoLlama can serve as a foundation for building increasingly sophisticated applications that leverage the power of language models while maintaining control over data and computation.





Addendum 


If you prefer using Apple Silicon hardware, you can add the following coding block right after the OptimizeGPUUsage function.


// Apple MPS optimization

func OptimizeMPSUsage(model *core.LlamaModel) {

    // Check if MPS is available (macOS with Apple Silicon or compatible AMD GPU)

    if model.IsMPSAvailable() {

        // Enable Metal Performance Shaders

        model.EnableMPS(true)

        

        // Configure MPS memory allocation strategy

        // Conservative: Allocates memory as needed, may be slower but uses less memory

        // Aggressive: Pre-allocates more memory for better performance

        model.SetMPSMemoryStrategy("aggressive")

        

        // Set batch size for MPS processing

        model.SetMPSBatchSize(128)

        

        // Enable memory pooling to reduce allocation overhead

        model.EnableMPSMemoryPooling(true)

    }

}


// MPS-specific tensor operations

func ConfigureMPSTensorOps(model *core.LlamaModel) {

    if model.IsMPSAvailable() {

        // Enable specialized tensor operations for Apple Silicon

        model.EnableMPSTensorCores(true)

        

        // Configure precision (options: float16, float32, bfloat16)

        // float16 is faster but less precise

        model.SetMPSPrecision("float16")

        

        // Enable Apple Neural Engine if available (M1/M2 chips)

        if model.IsANEAvailable() {

            model.EnableANE(true)

            // Configure which operations should be offloaded to ANE

            model.SetANEOperations([]string{"matmul", "attention"})

        }

    }

}


// MPS memory management

func OptimizeMPSMemory(model *core.LlamaModel) {

    if model.IsMPSAvailable() {

        // Set maximum memory usage (in bytes)

        // This helps prevent out-of-memory errors on devices with limited RAM

        model.SetMPSMaxMemory(8 * 1024 * 1024 * 1024) // 8GB limit

        

        // Enable memory compression for weight matrices

        model.EnableMPSMemoryCompression(true)

        

        // Configure garbage collection behavior for MPS buffers

        model.SetMPSGCStrategy("deferred") // Options: aggressive, deferred, manual

        

        // Set up manual purging of unused MPS resources

        model.EnableMPSPeriodicPurge(true, 60) // Purge unused resources every 60 seconds

    }

}


// MPS-specific model optimization

func OptimizeMPSModelPerformance(model *core.LlamaModel) {

    if model.IsMPSAvailable() {

        // Optimize model graph for MPS execution

        model.OptimizeMPSGraph()

        

        // Enable MPS-specific kernel fusion optimizations

        model.EnableMPSKernelFusion(true)

        

        // Configure MPS command queue depth

        // Higher values can improve throughput at the cost of latency

        model.SetMPSCommandQueueDepth(3)

        

        // Enable asynchronous command execution

        model.EnableMPSAsyncExecution(true)

        

        // Configure MPS-specific attention implementation

        model.SetMPSAttentionImplementation("flash") // Options: standard, flash

    }

}

No comments: