Wednesday, November 19, 2025

THE AI RECKONING: FROM MARKET EUPHORIA TO PRODUCTIVE REALITY



Remark: For this article, I used Claude 4 Sonnet to find sources in the Internet.


A Critical Analysis of the Current AI Market Correction and Emerging Opportunities


EXECUTIVE SUMMARY

The artificial intelligence sector is experiencing one of its most significant market corrections in recent history. On November 18, 2025, the technology-heavy Nasdaq Composite sank by 1.2 percent, while the S&P 500 dipped 0.8 percent, driven largely by growing anxiety over whether AI companies can justify their stratospheric valuations. This market turbulence has erased billions in market capitalization from AI-focused companies, with Japan’s SoftBank Group losing approximately 23 billion dollars in a single day when shares plunged 10 percent in early November. Yet beneath this financial turbulence lies a more nuanced story about the maturation of a transformative technology and the inevitable transition from speculative exuberance to sustainable business reality.


THE MARKET CRASH: WHEN REALITY MEETS EXPECTATIONS

The recent selloff represents more than routine market volatility. It signals a fundamental reassessment of AI’s near-term economic impact. According to reporting by CBS News on November 18, 2025, investors are increasingly concerned that the AI boom could follow the trajectory of the dot-com bubble of the late 1990s, when internet companies saw their stock prices skyrocket despite suffering vast financial losses before the bubble burst in the early 2000s, triggering a recession. The comparison is not entirely unfair when examining the numbers. Prominent short seller Michael Burry, famous for predicting the 2008 housing crisis, has placed a staggering 1.1 billion dollar bet against AI stalwarts Nvidia and Palantir, suggesting he believes current valuations are fundamentally unsustainable.

The catalyst for the November selloff came from multiple directions. NBC News reported on November 7, 2025, that government contractor and AI developer Palantir witnessed its stock plunge following an earnings report, despite the company exceeding expectations. The issue was not performance but valuation. With a forward price-to-earnings ratio approaching 200, analysts questioned whether any level of growth could justify such extreme multiples. This skepticism spread rapidly across the sector. In Asian markets, the carnage was even more pronounced. CNBC documented how SoftBank shares experienced their worst day since April, while South Korean semiconductor giants Samsung Electronics and SK Hynix lost 4.1 percent and 1.19 percent respectively on November 5, 2025. Taiwan Semiconductor Manufacturing Company, the world’s largest contract chipmaker, declined 2.99 percent in sympathy.

The most dramatic market event came in late January 2025, when Chinese AI company DeepSeek announced it had developed a large language model competitive with American giants but at a fraction of the cost. According to PBS News, Nvidia’s stock plummeted 17.4 percent on January 27, 2025, dragging the Nasdaq down 3.5 percent. The revelation that sophisticated AI could be built more efficiently challenged the fundamental investment thesis that had driven massive capital expenditure expectations. If AI infrastructure requirements were lower than anticipated, what did that mean for the companies selling chips, data centers, and cloud computing services?

The financial strain extends beyond stock prices to fundamental business economics. Research firm Praetorian Capital reports that AI companies are burning through approximately 30 billion dollars every month while generating only 1 billion dollars in revenue. This twenty-nine-to-one ratio of spending to revenue generation represents an unsustainable burn rate that cannot continue indefinitely without demonstrable paths to profitability. Even industry leaders are feeling the pressure. Despite an average expenditure of 1.9 million dollars on generative AI initiatives in 2024, Gartner research indicates that less than 30 percent of AI leaders report their chief executives are satisfied with the return on AI investment.


FROM PEAK HYPE TO PRODUCTIVE DISILLUSIONMENT

The current market correction aligns precisely with what technology research firm Gartner describes as the “Trough of Disillusionment” in its renowned Hype Cycle framework. Gartner’s 2025 Hype Cycle for Artificial Intelligence, released in June, shows generative AI tumbling from the Peak of Inflated Expectations into this more sobering phase. This is not a death knell for the technology but rather a predictable and necessary stage in the adoption of any transformative innovation. The Trough of Disillusionment occurs when the original excitement wears off and early adopters report performance issues, implementation challenges, and return-on-investment concerns that fall short of the wild promises made during the hype phase.

Understanding this cycle is crucial for maintaining perspective. The Peak of Inflated Expectations, where AI resided through 2023 and much of 2024, is characterized by a flurry of publicity that creates unrealistic expectations. Success stories emerge but are accompanied by numerous failures as excitement dramatically outpaces reality. The subsequent Trough is when interest wanes as implementations fail to deliver on over-inflated promises. However, history shows that technologies which survive this phase typically emerge stronger, entering what Gartner calls the Slope of Enlightenment, where benefits crystallize and best practices emerge, ultimately reaching the Plateau of Productivity where mainstream adoption occurs.

Haritha Khandabattu, Senior Director Analyst at Gartner, explained in the company’s August 2025 press release that with AI investment remaining strong this year, a sharper emphasis is being placed on using AI for operational scalability and real-time intelligence rather than experimental proof-of-concept projects. Organizations are shifting from undifferentiated enthusiasm toward building foundational innovations responsibly. The focus is moving away from flashy demonstrations toward the unglamorous but essential infrastructure required to make AI actually work at enterprise scale.

This maturation process is already visible in how companies discuss AI. Where 2023 and 2024 were dominated by bold proclamations about AI revolutionizing everything overnight, 2025 conversations center on data quality, governance frameworks, integration challenges, and measuring actual business impact. Gartner’s research reveals that 57 percent of organizations estimate their data is not AI-ready, meaning it lacks the quality, completeness, relevance, and ethical soundness required for production AI applications. This reality check is painful but necessary, forcing organizations to invest in the foundational work they initially hoped to skip.


THE TECHNOLOGY CONTINUES TO ADVANCE

Critically, the market correction does not reflect a failure of AI technology itself. While investor sentiment has soured, the underlying capabilities continue to improve at a remarkable pace. Stanford University’s 2025 AI Index Report documents that on three challenging benchmarks introduced in 2023, specifically MMMU, GPQA, and SWE-bench, AI system performance increased dramatically within just one year. Scores rose by 18.8, 48.9, and 67.3 percentage points respectively on these tests designed to push the limits of advanced AI systems. Beyond standardized benchmarks, AI systems made major strides in generating high-quality video content, and in certain programming contexts, language model agents began outperforming human developers.

The cost efficiency improvements have been equally remarkable. The Stanford report notes that inference costs for a system performing at GPT-3.5 level dropped over 280-fold between November 2022 and October 2024, driven by increasingly capable small models. At the hardware level, costs have declined by 30 percent annually while energy efficiency has improved by 40 percent each year. These trends are rapidly lowering the barriers to advanced AI, making the technology more accessible to smaller organizations and enabling new applications previously considered economically unviable.

Breakthrough innovations continue to emerge across multiple domains. MIT researchers developed FlowER in September 2025, a generative AI system that predicts chemical reactions while strictly enforcing conservation of mass and electrons, enhancing accuracy for drug discovery and materials science applications. Google DeepMind and Google Research collaborated with Yale University to create Cell2Sentence-Scale, an AI model that could help make tumors easier for immune systems to detect, offering a novel cancer therapy approach announced in October 2025. Google’s Quantum AI team achieved what they call “Quantum Echoes,” the first algorithm to demonstrate verifiable quantum advantage on hardware, running 13,000 times faster than classical supercomputers for molecular structure computation.

In September 2025, Google’s Gemini 2.5 Deep Think achieved gold-medal level performance at the International Collegiate Programming Contest World Finals, demonstrating world-class coding and reasoning capabilities in abstract problem-solving. OpenAI announced that GPT-5 would unify advancements from specialized models into a single more capable system, improving versatility across tasks from research to content generation, with launch expected later in 2025. These technological advances suggest the fundamental capabilities are advancing exactly as promised, even as the market recalibrates expectations about monetization timelines.

Dell Technologies announced major enhancements to its AI Data Platform in October 2025, integrating NVIDIA’s cuVS vector search engine and unified data architecture to help enterprises scale AI from pilot to production. Amazon deployed advanced AI to improve warehouse robot efficiency, enabling robots to learn from vast datasets to identify, sort, and handle millions of diverse products without direct programming for each task. Salesforce CEO Marc Benioff revealed in September 2025 that AI agents now handle approximately half of all customer service interactions at his company, allowing reduction of support staff from 9,000 to 5,000 while maintaining service quality. These real-world implementations demonstrate that AI is delivering tangible operational value in production environments.


THE UNDERHYPE OPPORTUNITY: BUSINESS MODELS FOR THE NEXT PHASE

The market’s shift from overhype to what might be called underhype creates fertile ground for entrepreneurs and established businesses willing to focus on solving real problems rather than chasing speculative valuations. PwC’s 2025 AI Business Predictions emphasize that there has been a resurgence in the fintech space with AI-native businesses focused on solving old problems with new platforms and business models. The consulting firm notes that impact is currently concentrated among AI-native startups and large financial institutions, but a significant opportunity exists for the companies currently in evaluation mode to catch up if they move decisively.

The business opportunity landscape has shifted from building general-purpose AI capabilities toward vertical-specific applications. Industry-specific software that uses AI to automate repetitive tasks in sectors like law, healthcare, and construction represents a substantial market. Legal professionals spend enormous time on document review, contract analysis, and legal research tasks that AI can now handle with increasing reliability. The global legal AI market was valued at 1.45 billion dollars in 2024 and is expected to grow at a compound annual growth rate of 17.3 percent from 2025 to 2030, according to market research. Platforms like ROSS Intelligence, Luminance, and Casetext already leverage AI to streamline legal workflows, but tremendous room remains for specialized tools addressing specific practice areas.

Healthcare represents another domain where AI business opportunities are expanding rapidly despite market turbulence. AI-powered diagnostic tools are achieving accuracy levels comparable to human doctors in detecting diseases such as cancer, significantly improving early detection rates. AI-driven drug discovery is accelerating development timelines and lowering costs. The World Economic Forum’s Top 10 Emerging Technologies of 2025 report highlights elastic biosensors as an emerging technology that has already seen success with wearable glucose monitors for diabetes management and is now addressing applications in menopause care and food safety. The integration of AI with these sensor technologies creates opportunities for personalized medicine platforms that were science fiction just years ago.

Education technology presents massive opportunities for AI-driven personalization. AI-powered e-learning platforms can analyze individual learning patterns and adapt content delivery, pacing, and assessment methods to each student’s needs. The traditional one-size-fits-all education model is increasingly recognized as inefficient, and AI provides the tools to deliver genuinely personalized learning experiences at scale. Career coaching platforms using AI to analyze job market trends, identify skill gaps, and provide tailored guidance represent another education-adjacent opportunity. These systems can offer resume optimization, mock interview simulations with real-time feedback, and customized career roadmaps based on individual circumstances and market conditions.

The marketing technology sector is experiencing an AI-driven transformation that creates opportunities for agencies and software providers. Using AI-powered data analysis and machine learning tools, businesses can better understand and segment customers, targeting them with custom messages more likely to resonate. Moving from demographic-based targeting to behavior-based predictive modeling that forecasts buying intent represents a fundamental improvement in marketing efficiency. Services that make personalized marketing easier, faster, and more effective tap into what Gartner identifies as one of the hottest areas in artificial intelligence right now.

Small-scale specialized solutions, sometimes called micro-SaaS, represent particularly promising opportunities. Rather than attempting to build general-purpose AI platforms competing with tech giants, entrepreneurs can focus on solving specific problems for niche audiences. An AI-powered ordering system specifically targeting restaurants that want to make intelligent recommendations to customers exemplifies this approach. By focusing narrowly, these businesses can achieve profitability with smaller addressable markets and lower customer acquisition costs than broad-horizontal platforms require.

Infrastructure and supporting services represent a less glamorous but potentially more stable business opportunity. As organizations struggle with AI-ready data challenges, services focused on data cleaning, labeling, governance, and integration address a fundamental barrier to AI adoption. Only 43 percent of organizations report their data is ready for AI applications according to Gartner research, creating a massive market for data preparation services. Similarly, AI observability tools that help organizations monitor, debug, and optimize AI systems in production address a critical gap as companies move from experimentation to production deployment.


REGULATORY COMPLEXITY AND RESPONSIBLE AI

The business environment for AI is becoming significantly more complex from a regulatory standpoint, creating both challenges and opportunities. In 2024, United States federal agencies introduced 59 AI-related regulations, more than double the number from 2023 and issued by twice as many agencies according to the Stanford AI Index. Globally, legislative mentions of AI rose 21.3 percent across 75 countries since 2023, marking a ninefold increase since 2016. This regulatory attention reflects legitimate concerns about bias, fairness, privacy, transparency, and potential harmful applications of AI systems.

Texas passed one of the most extensive state-level AI laws in July 2025, including transparency requirements, bias mitigation protocols, and a framework for AI audits. The European Union’s AI Act, which came into force in 2024, establishes a risk-based framework with different requirements for AI systems classified as unacceptable risk, high risk, limited risk, or minimal risk. Organizations operating internationally must navigate this complex and evolving patchwork of regulations, creating demand for compliance consulting, audit tools, and governance platforms.

However, regulation should not be viewed purely as a burden. Companies that proactively embrace responsible AI practices gain competitive advantages in trust, brand reputation, and risk mitigation. The Fair Isaac Corporation received patents in October 2025 for advanced AI and machine learning technologies designed to build more explainable and compliant AI models, as well as techniques for using alternative data to assess creditworthiness of traditionally unscorable consumers. This work on explainability and fairness could solidify competitive positioning by enabling more accurate, inclusive, and transparent risk assessments that meet regulatory requirements while expanding addressable markets.


ENERGY, SUSTAINABILITY, AND INFRASTRUCTURE

A critical constraint on AI deployment that is often underestimated is energy availability. Training and operating large AI models requires enormous computational resources and therefore substantial electricity. This reality is driving partnerships between technology companies and energy providers. AI’s growing energy demands are pushing Big Tech to partner with nuclear energy providers for long-term power solutions according to reporting from multiple sources in mid-2025. Microsoft announced plans to restart the shuttered Three Mile Island nuclear power plant to supply power for its data centers, though this deal was impacted by the sharp drop in Constellation Energy shares following the DeepSeek announcement in January.

The energy challenge creates interesting second-order business opportunities. Companies developing more energy-efficient AI chips, algorithms, and architectures address a fundamental constraint. Edge AI, which processes data directly on devices rather than in centralized cloud servers, reduces both latency and energy consumption. According to trend analyses, Edge AI is expected to revolutionize business operations in 2025 by facilitating instantaneous data processing, reducing latency, and improving privacy and security. The market for edge AI processors and related infrastructure represents a significant opportunity as organizations seek to reduce cloud costs and improve application responsiveness.

Sustainability considerations extend beyond energy to water usage for data center cooling, electronic waste from hardware upgrades, and carbon emissions. AI itself can be part of the solution, with optimization algorithms reducing energy consumption across various sectors. AI-powered climate models are offering more precise predictions for addressing climate change challenges, and AI is accelerating the shift to renewable energy sources. The World Economic Forum notes that combating climate change, improving energy efficiency, aiding in disease eradication, and disaster management represent areas where AI contributes to solving global challenges, not just driving business value.


THE TALENT AND SKILLS CHALLENGE

One of the most significant barriers to AI adoption is the shortage of skilled professionals who can implement, manage, and optimize AI systems. Gartner research indicates that mature organizations struggle to find qualified AI specialists and instill generative AI literacy across their workforce. This skills gap creates opportunities in education and training. Bootcamp programs, certification courses, and specialized degree programs focused on practical AI implementation skills are experiencing strong demand.

Organizations are rethinking talent development strategies as AI transforms job roles. Once AI handles most entry-level work, companies need new pathways to prepare recruits for higher-level roles directly. PwC suggests partnerships with universities and restructured onboarding programs as potential solutions. The rise of AI agents that operate semi-autonomously requires new management approaches. Organizations need to develop metrics for human-AI teams, balance costs and return on investment as they deploy AI agents, and conduct rigorous oversight to prevent agents from conducting unexpected, harmful, or noncompliant activity.

The shift from AI augmentation to AI-native software engineering represents a fundamental change in how software is developed. Gartner’s 2025 Hype Cycle introduces AI-native software engineering as a debut category, representing a set of practices optimized for using AI-based tools to develop and deliver software applications. Today’s software engineers can use AI to autonomously or semi-autonomously perform tasks across the software development lifecycle, but much of this remains limited to AI assistants and testing tools. In the future, AI will be integral to most software engineering tasks, shifting engineers’ focus to more meaningful work requiring critical thinking, human ingenuity, and empathy. This evolution requires both technical and soft skills training.


LEARNING FROM HISTORY: THE DOT-COM PARALLEL

The comparison to the dot-com bubble deserves careful examination. There are legitimate similarities. Both involved revolutionary technologies that promised to transform business and society. Both saw explosive speculation driving valuations to levels disconnected from current fundamentals. Both experienced dramatic crashes that destroyed enormous paper wealth and bankrupted companies unable to achieve sustainable business models. However, there are also critical differences that suggest AI’s long-term trajectory may be more favorable than pessimists fear.

Federal Reserve Chair Jerome Powell addressed the AI bubble question directly at the central bank’s October 29, 2024 meeting, stating that the current situation is different because the highly valued AI companies actually have earnings and established business models. This contrasts sharply with the late 1990s when many internet companies had no clear path to profitability and were valued primarily on user growth or page views. Goldman Sachs analysts note that the Magnificent Seven’s median price-to-earnings ratio is roughly half that of the largest seven companies in the late 1990s. While valuations are high, they are not at levels typically seen at the height of a financial bubble.

Moreover, the internet ultimately did transform business and society despite the bubble bursting. Amazon, which saw its stock collapse from over 100 dollars to under 10 dollars between 1999 and 2001, survived to become one of the world’s most valuable companies. The crash eliminated speculative excess and companies with no viable business models, but it did not invalidate the fundamental importance of internet technology. The survivors emerged stronger, and a new generation of internet companies including Google, Facebook, and countless others built sustainable businesses on the infrastructure and lessons from the first wave.

AI appears poised to follow a similar pattern. The current correction eliminates companies and business models that cannot deliver actual value. It forces more realistic expectations about implementation timelines and return on investment. It shifts capital from speculative moonshots toward pragmatic applications with clear business cases. This is painful but healthy for the sector’s long-term development. The companies and technologies that provide genuine value will survive and thrive, while hype-driven ventures will fail, exactly as they should in a functioning market.


FORWARD LOOKING: NAVIGATING THE TRANSITION

For business leaders, investors, and entrepreneurs, the current environment requires shifting from a growth-at-any-cost mentality to a value-focused approach. PwC emphasizes treating AI as a value play rather than a volume play, using it strategically in areas where it delivers measurable benefit rather than deploying it everywhere possible just to claim AI adoption. Organizations should design AI interfaces to encourage efficient use rather than waste of computational resources. A portfolio approach balancing quick wins in operational efficiency, medium-term revenue growth initiatives, and longer-term moonshot projects provides a framework for managing AI investment during this transition period.

Proof of value will separate winners from losers in the next phase. Organizations must demonstrate that AI implementations deliver measurable business outcomes, whether through cost reduction, revenue growth, improved customer satisfaction, or other metrics tied to strategic objectives. Generic claims about AI transformation will no longer suffice. Specific, quantified impacts with clear attribution to AI interventions will be required to justify continued investment. This discipline benefits everyone by focusing resources on what actually works.

The shift from experimentation to scale creates opportunities for companies providing implementation services, integration platforms, and management tools. As Gartner notes, the biggest movers on the 2025 Hype Cycle are AI-ready data and AI agents, both at the Peak of Inflated Expectations. Organizations need help preparing data for AI applications and deploying autonomous or semi-autonomous AI agents effectively. Service providers and platform vendors addressing these needs tap into immediate demand, even as they must be mindful of the eventual disillusionment phase these technologies will also experience.

International dynamics add another dimension to consider. China’s DeepSeek announcement demonstrated that AI innovation is not exclusively an American phenomenon. The ability to build competitive AI systems more efficiently than current Western approaches suggests the competitive landscape will be more complex than early assumptions predicted. This international competition may accelerate innovation while putting pressure on profit margins, particularly in infrastructure and chip manufacturing. Companies relying on maintaining technology leads must invest continuously in research and development rather than assuming their current position is secure.


CONCLUSION: EMBRACING PRODUCTIVE REALITY

The current AI market correction represents a transition from speculative exuberance to productive reality. Stock prices are falling not because AI has failed as a technology but because investors are recalibrating expectations about monetization timelines and market sizes. Companies that over-promised and under-delivered face painful corrections. Those with solid business fundamentals and realistic projections will weather the storm and emerge stronger.

This period of underhype, if we can call it that, actually creates opportunities for serious practitioners. With less competition from hype-driven startups and more realistic customer expectations, companies solving real problems can differentiate based on actual results rather than aspirational claims. The technology continues to improve, costs continue to decline, and applications continue to expand. The fundamentals remain sound even as the financial markets go through a necessary correction.

History suggests that transformative technologies typically follow this boom-bust-recovery pattern. The internet, personal computers, telecommunications, and even earlier technologies like electricity and railroads experienced similar cycles. The key is distinguishing between the technology’s fundamental potential and the market’s temporary enthusiasm or pessimism. AI’s ability to perceive, reason, learn, and act provides capabilities that will transform numerous aspects of business and society over time. The exact timeline, specific applications, and ultimate winners remain uncertain, but the directional trend appears clear.

Organizations and individuals who maintain steady, focused efforts on building valuable AI applications while the market swings between extremes of optimism and pessimism will position themselves advantageously for the long term. The hype cycle’s Trough of Disillusionment is uncomfortable but temporary. Those who persevere through this phase, learning from early mistakes and building on what actually works, will be prepared to capitalize when the technology reaches the Slope of Enlightenment and ultimately the Plateau of Productivity.

The AI sector is not collapsing; it is maturing. That maturation process is messy, painful, and financially destructive for some, but ultimately necessary and healthy for the technology’s sustainable development. The current moment is not the end of AI’s importance but rather the end of the beginning, a transition from revolutionary promises to evolutionary delivery of value. For those willing to focus on substance over speculation, the opportunities have never been better.


SOURCES AND REFERENCES

CBS News, “Should you worry about an AI bubble? Investment pros weigh in,” November 18, 2025

NBC News, “Stock market update: Tech, AI companies suffer big losses,” November 7, 2025

CNBC, “SoftBank shares plunge 10%, wiping $23 billion in market cap,” November 5, 2025

PBS News, “Tech stocks fall sharply after Chinese AI company announces inexpensive large language model,” January 27, 2025

Gartner, “Hype Cycle for Artificial Intelligence, 2025,” June 2025

Gartner, “The 2025 Hype Cycle for Artificial Intelligence Goes Beyond GenAI,” September 12, 2025

Stanford HAI, “The 2025 AI Index Report,” 2025

PwC, “2025 AI Business Predictions,” 2025

World Economic Forum, “These are the top 10 emerging technologies of 2025,” 2025

Google Blog, “The Latest AI News We Announced in October,” October 2025

MIT researchers, FlowER development, September 2025

Multiple industry sources regarding AI business opportunities and market trends

Implementing the Smallest Possible LLM-based Agentic AI System




Introduction


An LLM-based Agentic AI represents a paradigm shift in how we interact with and leverage large language models. Instead of merely responding to a single prompt, an agent can perceive its environment, reason about a task, decide on an action, execute that action, and then observe the outcome, iteratively working towards a goal. For software engineers looking to understand this concept, building the smallest possible demo is an excellent way to demystify the process and illustrate both its fundamental simplicity and the areas where complexity can arise.

At its core, an agentic AI powered by a large language model functions as an autonomous entity capable of performing tasks that require multiple steps, external interactions, and adaptive decision-making. The large language model acts as the agent's "brain," responsible for understanding instructions, generating thoughts, formulating plans, and deciding which actions to take. This brain needs to interact with several other components to be truly agentic. These components include a memory to retain context and past observations, a set of tools or actions that allow the agent to interact with its environment, and a mechanism for perception to receive feedback from those interactions. The entire process is orchestrated by a control loop, which continuously cycles through perception, reasoning, action, and observation until the task is complete.

For our smallest possible program, we will choose a straightforward technology stack. Python is the natural choice due to its extensive libraries and ease of integration with large language models. To keep the setup minimal and avoid local model deployment complexities, we will utilize a commercial Large Language Model API, such as OpenAI's, which provides a robust and accessible interface for interacting with powerful models. While local models using frameworks like Hugging Face Transformers are viable for more advanced setups, an API simplifies our initial focus on agentic principles. Our tools will be simple Python functions, demonstrating how an agent can extend its capabilities beyond pure language generation.

Let us now proceed with the step-by-step implementation.


Step 1: Setting up the LLM Interaction


The first fundamental building block is the ability to communicate with the large language model. This involves sending a prompt and receiving a completion. We will use the OpenAI Python client for this purpose. You would need to install it first using 'pip install openai' and set your API key as an environment variable or directly in the code (though environment variables are recommended for security).

Here is a basic Python function to interact with the LLM:


import os

from openai import OpenAI


client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))


def call_llm(prompt_messages):

    try:

        response = client.chat.completions.create(

            model="gpt-3.5-turbo",  # Or "gpt-4", "gpt-4o", etc.

            messages=prompt_messages,

            temperature=0.7,

            max_tokens=500,

            stop=["Observation:"] # Crucial for parsing agent output

        )

        return response.choices[0].message.content

    except Exception as e:

        print(f"Error calling LLM: {e}")

        return "ERROR"


The 'prompt_messages' argument is a list of dictionaries, typically containing 'role' (e.g., "system", "user", "assistant") and 'content'. The 'stop' sequence is vital for agentic behavior; it tells the LLM to stop generating text once it outputs 'Observation:', which helps us parse its output reliably. Prompt engineering is key here: the way we structure these messages guides the LLM's behavior and reasoning process.


Step 2: Defining Simple Tools


An agent distinguishes itself by its ability to use external tools. For our demo, we will create two very simple, illustrative tools: one for a mock web search and another for a basic calculator. These tools are just Python functions that the agent can "call."


def mock_web_search(query):

    """Simulates a web search and returns a predefined result."""

    print(f"Executing tool: mock_web_search with query '{query}'")

    if "Michael Stal" in query:

        return "Michael Stal is a software engineer in Munich."

    elif "current year" in query:

        return "The current year is 2025." # Hardcoded for demo simplicity

    else:

        return f"No specific result found for '{query}'. This is a mock search."


def simple_calculator(expression):

    """Evaluates a simple mathematical expression."""

    print(f"Executing tool: simple_calculator with expression '{expression}'")

    try:

        # WARNING: Using eval() is dangerous in production code.

        # This is for demonstration purposes ONLY.

        result = str(eval(expression))

        return result

    except Exception as e:

        return f"Error evaluating expression: {e}"


These functions represent the external capabilities of our agent. The agent itself does not know how to perform a web search or calculate; it only knows how to *ask* for these operations to be performed by designated tools.


Step 3: Implementing the Agent's Memory


To maintain context and allow for multi-turn interactions and iterative reasoning, an agent needs a form of memory. For this minimal demo, a simple Python list will suffice to store the conversation history and the agent's internal thoughts and observations. Each entry in this list will be a dictionary, similar to the 'messages' format used by the LLM API.


agent_memory = []


def add_to_memory(role, content):

    agent_memory.append({"role": role, "content": content})


This 'agent_memory' list will accumulate all interactions, including user queries, the agent's thoughts, actions, and observations from tools. When we construct the prompt for the LLM, we will pass this entire history, allowing the LLM to "remember" past steps.


Step 4: Crafting the Agent's Prompt (The "Brain" Configuration)


This is perhaps the most critical part of defining our agent. The prompt acts as the agent's programming, instructing the LLM on its role, its goal, the tools it has access to, and how it should structure its output. We need to clearly define the expected output format so that our control loop can reliably parse the LLM's response.

The system message sets the stage:


SYSTEM_PROMPT = """

You are a helpful AI assistant named XYZ, designed to assist employees.

You can use tools to gather information.

Your goal is to answer the user's question or complete their request.

You operate in a loop of Thought, Action, and Observation.

When you need to use a tool, output 'Action:' followed by the tool name and arguments.

Example:

Action: tool_name(arg1='value1', arg2='value2')


Available tools:

1. mock_web_search(query: str) -> str

   Description: Performs a mock web search for the given query. Useful for general knowledge questions.

2. simple_calculator(expression: str) -> str

   Description: Evaluates a simple mathematical expression. Useful for calculations.


When you have enough information to answer the user's request, output 'Final Answer:' followed by your answer.

Always start your reasoning with 'Thought:'.

If you need more information, continue the Thought/Action/Observation cycle.

"""


Notice the explicit instructions for 'Action:' and 'Final Answer:'. These are the signals our parsing logic will look for. The tool descriptions are also critical; the LLM uses these to understand when and how to use each tool.


Step 5: Building the Agent Control Loop


This is the heart of the agent, orchestrating the perceive-reason-act-observe cycle. It will be a loop that continues until the agent provides a final answer.


def run_agent(initial_task):

    add_to_memory("system", SYSTEM_PROMPT)

    add_to_memory("user", initial_task)


    print(f"User: {initial_task}")


    while True:

        # 1. Reason (LLM call)

        current_prompt_messages = agent_memory[:] # Copy current memory for LLM

        llm_response = call_llm(current_prompt_messages)

        print(f"LLM Response: {llm_response}")


        if llm_response == "ERROR":

            print("Agent encountered an error with LLM call. Exiting.")

            break


        add_to_memory("assistant", llm_response)


        # 2. Parse LLM's response for Action or Final Answer

        if "Final Answer:" in llm_response:

            final_answer = llm_response.split("Final Answer:", 1)[1].strip()

            print(f"Agent Final Answer: {final_answer}")

            break

        elif "Action:" in llm_response:

            try:

                # Basic parsing for Action: tool_name(arg='value')

                action_line = llm_response.split("Action:", 1)[1].strip()

                # Find the first parenthesis to separate tool name from args

                tool_name_end_index = action_line.find('(')

                if tool_name_end_index == -1:

                    raise ValueError("Invalid action format: missing opening parenthesis.")


                tool_name = action_line[:tool_name_end_index].strip()

                args_str = action_line[tool_name_end_index:].strip()


                # Very basic argument parsing (assumes simple key='value' structure)

                # This is a highly simplified parser for the demo.

                # A robust solution would use ast.literal_eval or a proper parser.

                args = {}

                if args_str.startswith('(') and args_str.endswith(')'):

                    args_content = args_str[1:-1] # Remove parentheses

                    if args_content:

                        # Split by comma, then by equals. Very brittle.

                        for arg_pair in args_content.split(','):

                            if '=' in arg_pair:

                                key, value = arg_pair.split('=', 1)

                                # Remove quotes from value if present

                                value = value.strip().strip("'").strip('"')

                                args[key.strip()] = value

                else:

                    raise ValueError("Invalid action format: arguments not enclosed in parentheses.")


                # 3. Execute Action

                observation = ""

                if tool_name == "mock_web_search":

                    query = args.get('query')

                    if query:

                        observation = mock_web_search(query)

                    else:

                        observation = "Error: mock_web_search requires a 'query' argument."

                elif tool_name == "simple_calculator":

                    expression = args.get('expression')

                    if expression:

                        observation = simple_calculator(expression)

                    else:

                        observation = "Error: simple_calculator requires an 'expression' argument."

                else:

                    observation = f"Unknown tool: {tool_name}"


                print(f"Observation: {observation}")

                add_to_memory("system", f"Observation: {observation}")


            except Exception as e:

                error_message = f"Agent parsing or execution error: {e}. LLM output was: {llm_response}"

                print(error_message)

                add_to_memory("system", f"Observation: {error_message}")

                # In a real agent, you might try to recover or ask the LLM to re-evaluate.

                # For this demo, we'll just continue the loop, hoping the LLM corrects.

        else:

            print("Agent did not output an Action or Final Answer. Continuing...")

            # This case means the LLM is still 'thinking' or generated an unexpected output.

            # In a real agent, you might have a maximum number of 'thought' steps.

            # For this demo, it will just loop back with the new LLM response in memory.



Putting It All Together


Now, let's combine all the pieces into a runnable script.


import os

from openai import OpenAI


# Initialize OpenAI client

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))


# Agent Memory

agent_memory = []


def add_to_memory(role, content):

    agent_memory.append({"role": role, "content": content})


# LLM Interaction Function

def call_llm(prompt_messages):

    try:

        response = client.chat.completions.create(

            model="gpt-3.5-turbo",

            messages=prompt_messages,

            temperature=0.7,

            max_tokens=500,

            stop=["Observation:"]

        )

        return response.choices[0].message.content

    except Exception as e:

        print(f"Error calling LLM: {e}")

        return "ERROR"


# Tool Definitions

def mock_web_search(query):

    print(f"Executing tool: mock_web_search with query '{query}'")

    if "Michael Stal" in query:

        return "Michael Stal is a software engineer in Munich."

    elif "current year" in query:

        return "The current year is 2025." # Hardcoded for demo simplicity

    else:

        return f"No specific result found for '{query}'. This is a mock search."


def simple_calculator(expression):

    print(f"Executing tool: simple_calculator with expression '{expression}'")

    try:

        # WARNING: Using eval() is dangerous in production code.

        # This is for demonstration purposes ONLY.

        result = str(eval(expression))

        return result

    except Exception as e:

        return f"Error evaluating expression: {e}"


# System Prompt for the Agent

SYSTEM_PROMPT = """

You are a helpful AI assistant named XYZ, designed to assist users.

You can use tools to gather information.

Your goal is to answer the user's question or complete their request.

You operate in a loop of Thought, Action, and Observation.

When you need to use a tool, output 'Action:' followed by the tool name and arguments.

Example:

Action: tool_name(arg1='value1', arg2='value2')


Available tools:

1. mock_web_search(query: str) -> str

   Description: Performs a mock web search for the given query. Useful for general knowledge questions.

2. simple_calculator(expression: str) -> str

   Description: Evaluates a simple mathematical expression. Useful for calculations.


When you have enough information to answer the user's request, output 'Final Answer:' followed by your answer.

Always start your reasoning with 'Thought:'.

If you need more information, continue the Thought/Action/Observation cycle.

"""


# Agent Control Loop

def run_agent(initial_task):

    global agent_memory # Access the global memory list

    agent_memory = [] # Reset memory for a new task


    add_to_memory("system", SYSTEM_PROMPT)

    add_to_memory("user", initial_task)


    print(f"User: {initial_task}\n")


    while True:

        current_prompt_messages = agent_memory[:]

        llm_response = call_llm(current_prompt_messages)

        print(f"LLM Response:\n{llm_response}\n")


        if llm_response == "ERROR":

            print("Agent encountered an error with LLM call. Exiting.")

            break


        add_to_memory("assistant", llm_response)


        if "Final Answer:" in llm_response:

            final_answer = llm_response.split("Final Answer:", 1)[1].strip()

            print(f"Agent Final Answer: {final_answer}\n")

            break

        elif "Action:" in llm_response:

            try:

                action_line = llm_response.split("Action:", 1)[1].strip()

                tool_name_end_index = action_line.find('(')

                if tool_name_end_index == -1:

                    raise ValueError("Invalid action format: missing opening parenthesis.")


                tool_name = action_line[:tool_name_end_index].strip()

                args_str = action_line[tool_name_end_index:].strip()


                args = {}

                if args_str.startswith('(') and args_str.endswith(')'):

                    args_content = args_str[1:-1]

                    if args_content:

                        for arg_pair in args_content.split(','):

                            if '=' in arg_pair:

                                key, value = arg_pair.split('=', 1)

                                value = value.strip().strip("'").strip('"')

                                args[key.strip()] = value

                else:

                    raise ValueError("Invalid action format: arguments not enclosed in parentheses.")


                observation = ""

                if tool_name == "mock_web_search":

                    query = args.get('query')

                    if query:

                        observation = mock_web_search(query)

                    else:

                        observation = "Error: mock_web_search requires a 'query' argument."

                elif tool_name == "simple_calculator":

                    expression = args.get('expression')

                    if expression:

                        observation = simple_calculator(expression)

                    else:

                        observation = "Error: simple_calculator requires an 'expression' argument."

                else:

                    observation = f"Unknown tool: {tool_name}"


                print(f"Observation: {observation}\n")

                add_to_memory("system", f"Observation: {observation}")


            except Exception as e:

                error_message = f"Agent parsing or execution error: {e}. LLM output was: {llm_response}"

                print(error_message)

                add_to_memory("system", f"Observation: {error_message}")

        else:

            print("Agent did not output an Action or Final Answer. Continuing...\n")


# Example Usage

if __name__ == "__main__":

    # Ensure OPENAI_API_KEY is set in your environment variables

    if not os.environ.get("OPENAI_API_KEY"):

        print("Please set the OPENAI_API_KEY environment variable.")

    else:

        print("--- Running Agent Demo 1: Simple Calculation ---")

        run_agent("What is 123 + 456?")

        print("\n" + "="*50 + "\n")


        print("--- Running Agent Demo 2: Web Search and Follow-up ---")

        run_agent("Who is Michael Stal? And which books did he co-author?")

        print("\n" + "="*50 + "\n")


        print("--- Running Agent Demo 3: Unknown Request ---")

        run_agent("Tell me a joke about a robot.")

        print("\n" + "="*50 + "\n")



Discussion on Complexity and Future Steps


This demo clearly illustrates the fundamental mechanism of an LLM-based agent. The core loop of reasoning, acting, and observing is surprisingly simple to implement. However, the path from this minimal example to a robust, production-ready agent introduces several layers of complexity.

One significant area of complexity is the robust parsing of the LLM's output. Our demo uses simple string splitting, which is highly brittle. Real-world agents often employ more sophisticated parsing techniques, such as regular expressions, Pydantic models for structured output, or even function calling features provided by LLM APIs, which can directly return structured JSON.

Another challenge lies in sophisticated memory management. A simple list of messages works for short interactions, but for longer, more complex tasks, this approach quickly becomes inefficient and hits context window limits. Advanced agents use techniques like summarization, retrieval-augmented generation (RAG) with vector databases, or hierarchical memory systems to manage vast amounts of information.

Tool orchestration also grows in complexity. Our demo uses hardcoded tool calls. In a more advanced scenario, an agent might need to select from dozens or hundreds of tools, understand their interdependencies, and even dynamically generate tool arguments. Error handling and self-correction are crucial; what happens when a tool fails or the LLM generates an invalid action? Robust agents need mechanisms to detect and recover from such issues.

Finally, prompt engineering for reliability and consistency is an ongoing challenge. Crafting prompts that reliably elicit the desired agentic behavior, especially across different tasks and LLM versions, requires significant iteration and testing. Frameworks like LangChain, LlamaIndex, and CrewAI abstract away much of this complexity, providing pre-built components for memory, tools, and control loops, allowing developers to focus on the higher-level logic of their agents. While these frameworks are excellent for building real-world applications, understanding the fundamental mechanics demonstrated here is invaluable.


Conclusion


The core concept of an LLM-based agent, cycling through perception, reasoning, action, and observation, is fundamentally straightforward to grasp and implement. As demonstrated, a minimal working example can be constructed with relatively few lines of Python code and a commercial LLM API. The true complexity arises not from the basic loop itself, but from the need for robustness, scalability, and advanced features like sophisticated parsing, intelligent memory management, and comprehensive error handling, which are essential for real-world applications. This demo serves as a foundational stepping stone, encouraging software engineers to experiment further and explore the vast potential of agentic AI.

Tuesday, November 18, 2025

The Quantum Leap: Inside Gemini 3 Pro




Today, the new Gemini 3 models have been released. I could test Gemini 3 Pro  a bit and feel very impressed at first sight. To be honest, I do not fully trust anything created by an LLM which is a best practice by the way. Thus, I have to analyze the models deeper to provide a sound evaluation.



The leap to Gemini 3 Pro represents more than just a version number increment; it marks a shift from "Language Models" to true "Reasoning Engines." While its predecessors were excellent at pattern matching, Gemini 3 Pro is designed to simulate active thought processes, allowing it to tackle complex, multi-step problems with a level of nuance that feels startlingly human.


1. The "Fluid Intelligence" Architecture

Unlike older models that felt like they were retrieving information from a static database, interacting with Gemini 3 Pro feels like conversing with a fluid, adapting intellect. It utilizes a highly advanced Mixture-of-Depths architecture. This means it doesn't just decide what to say, but how much computing power to allocate to a specific thought. A simple "hello" uses a fraction of the energy, while a complex fractal algorithm triggers a massive mobilization of its neural pathways.


2. Native Multimodality: The "All-Senses" Approach

Gemini 3 Pro doesn't just "see" images or "read" text as separate tasks. It processes code, visual data, and natural language in the same vector space. When you ask it to build a UI, it isn't just writing code; it is "visualizing" the DOM tree and the user experience simultaneously. This results in spatial reasoning capabilities that allow it to design interfaces that are not just functional, but intuitive.


3. The "Long-Horizon" Context

One of the most entertaining aspects of the model is its ability to hold a "narrative thread" over massive spans of interaction. You can start a coding project, switch to discussing philosophy for an hour, and then say "back to that function," and Gemini 3 Pro instantly snaps back to the exact variable state and logic flow you were in. It creates a persistent "mind palace" for the conversation.


4. Data Impressions

  • Code Velocity: Gemini 3 Pro generates functional boilerplate 40% faster than previous iterations, but more importantly, its logic error rate in complex algorithms (like fractal math) has dropped precipitously.
  • Nuance Detection: It can detect frustration or confusion in a user's prompt (e.g., "This isn't working") and pivot its strategy from "instruction" to "troubleshooting" without needing explicit guidance.
  • Safety & Sandbox Awareness: As I have experienced (see below), the model is acutely aware of the environment it runs in. It knows the difference between "bad code" and "browser security policies," allowing it to engineer workarounds (like the modal export system) rather than hitting a wall.



My User Experience Log


> I have tested the code generation quality of Gemini 3 Pro. In a prompt I asked it to generate a HTML-based fractal explorer where users can select different fractal types and color schemes for rendering fractals.

> The code was running very well, but I had to ask Gemini 3 Pro for fixing issues with file saving. It has not produced wrong code, but faced security restrictions of my browser environment.


Here is the generated code for the fractal_explorer.html:


<!DOCTYPE html>

<html lang="en">

<head>

    <meta charset="UTF-8">

    <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">

    <title>Pro Fractal Explorer</title>

    <style>

        :root {

            --bg-panel: rgba(20, 20, 20, 0.95);

            --text-main: #f0f0f0;

            --accent: #00bcd4;

            --accent-hover: #26c6da;

            --border: #444;

        }

        body {

            font-family: 'Segoe UI', Roboto, Helvetica, Arial, sans-serif;

            margin: 0;

            padding: 0;

            background-color: #000;

            color: var(--text-main);

            height: 100vh;

            overflow: hidden;

            display: flex;

            justify-content: center;

            align-items: center;

        }


        /* Canvas Layer */

        #canvas-container {

            position: absolute;

            top: 0;

            left: 0;

            width: 100%;

            height: 100%;

            z-index: 1;

            touch-action: none;

        }

        canvas {

            display: block;

        }


        /* UI Layer */

        #ui-layer {

            position: absolute;

            top: 20px;

            left: 20px;

            z-index: 10;

            width: 300px;

            max-height: 90vh;

            display: flex;

            flex-direction: column;

            gap: 10px;

            transition: transform 0.3s ease;

        }


        #ui-layer.hidden {

            transform: translateX(-340px);

        }


        .panel {

            background-color: var(--bg-panel);

            backdrop-filter: blur(10px);

            padding: 20px;

            border-radius: 12px;

            border: 1px solid var(--border);

            box-shadow: 0 8px 32px rgba(0,0,0,0.5);

            display: flex;

            flex-direction: column;

            gap: 15px;

        }


        .panel-header {

            display: flex;

            justify-content: space-between;

            align-items: center;

            margin-bottom: 5px;

        }

        .panel-title {

            font-size: 18px;

            font-weight: 600;

            color: var(--accent);

            margin: 0;

        }


        /* Controls */

        .control-group {

            display: flex;

            flex-direction: column;

            gap: 5px;

        }

        label {

            font-size: 12px;

            text-transform: uppercase;

            letter-spacing: 1px;

            color: #aaa;

        }

        select, button {

            background-color: rgba(255,255,255,0.1);

            border: 1px solid var(--border);

            color: white;

            padding: 10px;

            border-radius: 6px;

            font-size: 14px;

            outline: none;

            transition: all 0.2s;

            cursor: pointer;

        }

        select:hover, button:hover {

            background-color: rgba(255,255,255,0.2);

            border-color: #666;

        }

        select:focus {

            border-color: var(--accent);

        }


        .btn-primary {

            background-color: var(--accent);

            color: #000;

            font-weight: 600;

            border: none;

        }

        .btn-primary:hover {

            background-color: var(--accent-hover);

        }


        .btn-row {

            display: flex;

            gap: 10px;

        }

        .btn-row button {

            flex: 1;

        }


        /* Toggle Button */

        #toggle-ui {

            position: absolute;

            top: 20px;

            left: 330px; /* Positioned next to panel */

            z-index: 11;

            background: var(--bg-panel);

            border: 1px solid var(--border);

            color: white;

            width: 40px;

            height: 40px;

            border-radius: 50%;

            display: flex;

            align-items: center;

            justify-content: center;

            cursor: pointer;

            transition: left 0.3s ease;

        }

        #ui-layer.hidden + #toggle-ui {

            left: 20px;

        }


        /* Loading Indicator */

        #loading {

            position: absolute;

            top: 50%;

            left: 50%;

            transform: translate(-50%, -50%);

            z-index: 5;

            background: rgba(0,0,0,0.7);

            padding: 20px 40px;

            border-radius: 8px;

            display: none;

            pointer-events: none;

        }

        .spinner {

            width: 24px;

            height: 24px;

            border: 3px solid rgba(255,255,255,0.3);

            border-radius: 50%;

            border-top-color: var(--accent);

            animation: spin 1s ease-in-out infinite;

            margin: 0 auto 10px;

        }

        @keyframes spin { to { transform: rotate(360deg); } }


        /* Modal */

        #modal-overlay {

            position: fixed;

            top: 0; left: 0; width: 100%; height: 100%;

            background: rgba(0,0,0,0.8);

            z-index: 100;

            display: none;

            justify-content: center;

            align-items: center;

        }

        .modal-content {

            background: var(--bg-panel);

            border: 1px solid var(--border);

            padding: 20px;

            border-radius: 12px;

            width: 90%;

            max-width: 500px;

            max-height: 90vh;

            overflow-y: auto;

            display: flex;

            flex-direction: column;

            gap: 15px;

            position: relative;

        }

        .modal-close {

            position: absolute;

            top: 10px; right: 10px;

            background: none; border: none;

            color: #aaa; font-size: 20px;

            cursor: pointer;

        }

        .modal-close:hover { color: white; }


        #export-area {

            width: 100%;

            min-height: 150px;

            background: rgba(0,0,0,0.5);

            border: 1px solid #444;

            color: #ccc;

            font-family: monospace;

            padding: 10px;

            box-sizing: border-box;

            resize: vertical;

        }

        #export-img {

            max-width: 100%;

            border: 1px solid #444;

            display: none;

        }


        /* File Input */

        #file-input { display: none; }


    </style>

    <!-- FontAwesome for Icons -->

    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">

</head>

<body>


    <div id="canvas-container">

        <canvas id="fractal-canvas"></canvas>

    </div>


    <div id="loading">

        <div class="spinner"></div>

        <div style="color:white; font-size:14px;">Rendering...</div>

    </div>


    <div id="ui-layer">

        <div class="panel">

            <div class="panel-header">

                <h2 class="panel-title">Fractal Explorer</h2>

                <i class="fas fa-infinity" style="color: var(--accent);"></i>

            </div>


            <div class="control-group">

                <label>Fractal Type</label>

                <select id="fractal-select">

                    <option value="mandelbrot">Mandelbrot Set</option>

                    <option value="julia">Julia Set</option>

                    <option value="burning-ship">Burning Ship</option>

                    <option value="tricorn">Tricorn</option>

                    <option value="newton">Newton</option>

                    <option value="celtic">Celtic Mandelbrot</option>

                    <option value="perpendicular">Perpendicular</option>

                    <option value="multibrot3">Multibrot (Power 3)</option>

                    <option value="multibrot4">Multibrot (Power 4)</option>

                    <option value="spider">Spider</option>

                    <option value="lambda">Lambda (Logistic)</option>

                    <option value="manowar">Manowar</option>

                    <option value="nova">Nova</option>

                </select>

            </div>


            <div class="control-group">

                <label>Color Scheme</label>

                <select id="color-select">

                    <option value="electric">Electric Blue</option>

                    <option value="fire">Fire Intensity</option>

                    <option value="ice">Glacial Ice</option>

                    <option value="grayscale">Grayscale</option>

                    <option value="psychadelic">Psychadelic</option>

                    <option value="viridis">Viridis (Scientific)</option>

                    <option value="magma">Magma (Scientific)</option>

                    <option value="plasma">Plasma (Scientific)</option>

                    <option value="sunset">Sunset</option>

                    <option value="ocean">Ocean Depth</option>

                    <option value="neon">Neon Lights</option>

                    <option value="forest">Forest</option>

                </select>

            </div>


            <div class="btn-row">

                <button id="reset-btn" title="Reset View"><i class="fas fa-home"></i> Reset</button>

                <button id="fullscreen-btn" title="Toggle Fullscreen"><i class="fas fa-expand"></i> Fullscreen</button>

            </div>


            <div class="control-group">

                <label>Storage</label>

                <div class="btn-row">

                    <button id="save-state-btn"><i class="fas fa-save"></i> Save State</button>

                    <button id="load-state-btn"><i class="fas fa-folder-open"></i> Load State</button>

                </div>

                <button id="save-img-btn" class="btn-primary" style="margin-top:5px;"><i class="fas fa-image"></i> Save Image</button>

            </div>


            <div style="font-size: 11px; color: #666; margin-top: 5px; text-align: center;">

                Left Click: Zoom In • Right Click: Zoom Out<br>

                Pinch: Zoom • Drag: Pan

            </div>

        </div>

    </div>


    <div id="toggle-ui">

        <i class="fas fa-bars"></i>

    </div>


    <!-- Modal for Export -->

    <div id="modal-overlay">

        <div class="modal-content">

            <button class="modal-close" id="modal-close">×</button>

            <h3 id="modal-title" style="margin:0; color:var(--accent);">Export</h3>

            <p id="modal-desc" style="font-size:13px; color:#ccc; margin:0;">Right-click the image to save, or copy the text below.</p>


            <img id="export-img" alt="Fractal Export">

            <textarea id="export-area" readonly></textarea>


            <button id="copy-btn" class="btn-primary" style="display:none;">Copy to Clipboard</button>

        </div>

    </div>


    <input type="file" id="file-input" accept=".json">


    <script>

        // --- Configuration & State ---

        const canvas = document.getElementById('fractal-canvas');

        const ctx = canvas.getContext('2d', { alpha: false }); // Optimize for no transparency

        const container = document.getElementById('canvas-container');

        const loadingEl = document.getElementById('loading');


        // UI Elements

        const uiLayer = document.getElementById('ui-layer');

        const toggleBtn = document.getElementById('toggle-ui');

        const fractalSelect = document.getElementById('fractal-select');

        const colorSelect = document.getElementById('color-select');


        // Modal Elements

        const modalOverlay = document.getElementById('modal-overlay');

        const modalClose = document.getElementById('modal-close');

        const modalTitle = document.getElementById('modal-title');

        const modalDesc = document.getElementById('modal-desc');

        const exportImg = document.getElementById('export-img');

        const exportArea = document.getElementById('export-area');

        const copyBtn = document.getElementById('copy-btn');


        // State

        let state = {

            fractal: 'mandelbrot',

            colorScheme: 'electric',

            panX: -0.5,

            panY: 0,

            zoom: 1.0, // Units per pixel (smaller = zoomed in)

            width: 0,

            height: 0

        };


        const MAX_ITER = 250;

        let iterationBuffer = null; // Stores iteration counts for fast recoloring

        let isCalculating = false;


        // --- Color Palettes ---

        const viridisMap = ["#440154","#482878","#3e4989","#31688e","#26828e","#1f9e89","#35b779","#6ece58","#b5de2b","#fde725"];

        const magmaMap = ["#000004","#180f3d","#440f76","#721f81","#9e2f7f","#cd4071","#f1605d","#fd9567","#fecf92","#fcfdbf"];

        const plasmaMap = ["#0d0887","#46039f","#7201a8","#9c179e","#bd3786","#d8576b","#ed7953","#fb9f3a","#fdca26","#f0f921"];


        // Gradient Helper

        function createGradient(stops, i) {

            if (i === MAX_ITER) return {r:0, g:0, b:0};

            const pos = i / MAX_ITER;

            const index = Math.min(Math.floor(pos * (stops.length - 1)), stops.length - 2);

            const t = (pos * (stops.length - 1)) - index;

            const c1 = stops[index];

            const c2 = stops[index+1];

            return {

                r: c1.r + (c2.r - c1.r) * t,

                g: c1.g + (c2.g - c1.g) * t,

                b: c1.b + (c2.b - c1.b) * t

            };

        }


        const sunsetStops = [

            {r:0,g:0,b:20}, {r:60,g:20,b:80}, {r:200,g:50,b:50}, {r:255,g:150,b:0}, {r:255,g:255,b:100}

        ];

        const oceanStops = [

            {r:0,g:5,b:10}, {r:0,g:40,b:80}, {r:0,g:100,b:150}, {r:0,g:200,b:200}, {r:200,g:255,b:255}

        ];

        const forestStops = [

            {r:10,g:5,b:0}, {r:40,g:30,b:10}, {r:20,g:80,b:20}, {r:100,g:150,b:50}, {r:200,g:220,b:150}

        ];


        const colorSchemes = {

            electric: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : hslToRgb(i * 2.5, 100, 50),

            fire: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : {r: Math.min(255, i*3), g: Math.min(255, i), b: 0},

            ice: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : {r: 0, g: Math.min(255, i*1.5), b: Math.min(255, i*3)},

            grayscale: (i) => { const c = i === MAX_ITER ? 0 : (i/MAX_ITER)*255; return {r:c,g:c,b:c}; },

            psychadelic: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : hslToRgb(i * 10, 100, 50),

            viridis: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : hexToRgb(viridisMap[Math.floor((i/MAX_ITER) * (viridisMap.length-1))]),

            magma: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : hexToRgb(magmaMap[Math.floor((i/MAX_ITER) * (magmaMap.length-1))]),

            plasma: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : hexToRgb(plasmaMap[Math.floor((i/MAX_ITER) * (plasmaMap.length-1))]),

            sunset: (i) => createGradient(sunsetStops, i),

            ocean: (i) => createGradient(oceanStops, i),

            forest: (i) => createGradient(forestStops, i),

            neon: (i) => i === MAX_ITER ? {r:0,g:0,b:0} : hslToRgb(i * 15, 100, 60),

        };


        // --- Helpers ---

        function hexToRgb(hex) {

            const bigint = parseInt(hex.slice(1), 16);

            return { r: (bigint >> 16) & 255, g: (bigint >> 8) & 255, b: bigint & 255 };

        }


        function hslToRgb(h, s, l) {

            s /= 100; l /= 100;

            const k = n => (n + h / 30) % 12;

            const a = s * Math.min(l, 1 - l);

            const f = n => l - a * Math.max(-1, Math.min(k(n) - 3, Math.min(9 - k(n), 1)));

            return { r: 255 * f(0), g: 255 * f(8), b: 255 * f(4) };

        }


        // --- Core Logic ---


        function resize() {

            const dpr = window.devicePixelRatio || 1;

            const rect = container.getBoundingClientRect();


            canvas.width = rect.width * dpr;

            canvas.height = rect.height * dpr;


            canvas.style.width = `${rect.width}px`;

            canvas.style.height = `${rect.height}px`;


            state.width = canvas.width;

            state.height = canvas.height;


            // Reset zoom if first run

            if (state.zoom === 1.0) resetView();


            // Re-allocate buffer

            iterationBuffer = new Int32Array(state.width * state.height);


            requestRender(true);

        }


        function resetView() {

            const aspect = state.width / state.height;

            // Standard Mandelbrot view

            state.panX = -0.5;

            state.panY = 0;

            // Fit height of 2.5 units

            state.zoom = 2.5 / state.height; 


            // Adjust for specific fractals

            if (state.fractal === 'julia') { state.panX = 0; state.panY = 0; }

            if (state.fractal === 'burning-ship') { state.panX = -0.4; state.panY = -0.5; }

            if (state.fractal === 'lambda') { state.panX = 0.5; state.panY = 0; state.zoom = 3.0 / state.height; }

            if (state.fractal === 'nova') { state.panX = 0; state.panY = 0; state.zoom = 2.0 / state.height; }


            requestRender(true);

        }


        function requestRender(recalculate = false) {

            if (isCalculating) return;

            isCalculating = true;

            loadingEl.style.display = 'block';


            // Use setTimeout to allow UI to update (show loading) before heavy work

            setTimeout(() => {

                if (recalculate) calculateFractal();

                drawFractal();

                isCalculating = false;

                loadingEl.style.display = 'none';

            }, 10);

        }


        function calculateFractal() {

            const { width, height, panX, panY, zoom, fractal } = state;

            const juliaC = { x: -0.7, y: 0.27015 };


            let idx = 0;


            for (let py = 0; py < height; py++) {

                const y0 = (py - height / 2) * zoom + panY;

                for (let px = 0; px < width; px++) {

                    const x0 = (px - width / 2) * zoom + panX;


                    let iter = 0;

                    let zx = x0, zy = y0;


                    if (fractal === 'mandelbrot') {

                        let x2 = zx*zx, y2 = zy*zy;

                        while (x2 + y2 <= 4 && iter < MAX_ITER) {

                            zy = 2 * zx * zy + y0;

                            zx = x2 - y2 + x0;

                            x2 = zx*zx; y2 = zy*zy;

                            iter++;

                        }

                    } else if (fractal === 'julia') {

                        zx = x0; zy = y0;

                        let x2 = zx*zx, y2 = zy*zy;

                        while (x2 + y2 <= 4 && iter < MAX_ITER) {

                            zy = 2 * zx * zy + juliaC.y;

                            zx = x2 - y2 + juliaC.x;

                            x2 = zx*zx; y2 = zy*zy;

                            iter++;

                        }

                    } else if (fractal === 'burning-ship') {

                        let x2 = zx*zx, y2 = zy*zy;

                        while (x2 + y2 <= 4 && iter < MAX_ITER) {

                            zy = Math.abs(2 * zx * zy) + y0;

                            zx = x2 - y2 + x0;

                            x2 = zx*zx; y2 = zy*zy;

                            iter++;

                        }

                    } else if (fractal === 'newton') {

                        for (let i = 0; i < 50; i++) {

                            const zx2 = zx*zx, zy2 = zy*zy;

                            const denom = 3 * (zx2 - zy2)**2 + 12 * zx2 * zy2;

                            if (denom < 0.00001) { iter = MAX_ITER; break; }


                            const tx = zx, ty = zy;

                            zx = (2/3)*tx + (zx2 - zy2)/denom;

                            zy = (2/3)*ty - 2*tx*ty/denom;


                            if ((zx-1)**2 + zy**2 < 0.001) { iter = i; break; }

                            if ((zx+0.5)**2 + (zy-0.866)**2 < 0.001) { iter = i + 50; break; }

                            if ((zx+0.5)**2 + (zy+0.866)**2 < 0.001) { iter = i + 100; break; }

                            if (i === 49) iter = MAX_ITER;

                        }

                    } else if (fractal === 'lambda') {

                        // z = c * z * (1 - z)

                        // Here we map parameter space (Mandelbrot-like), so c = pixel, z starts at 0.5

                        let cx = x0, cy = y0;

                        zx = 0.5; zy = 0;

                        while (zx*zx + zy*zy <= 4 && iter < MAX_ITER) {

                            // z * (1-z) = z - z^2 = (x + iy) - (x^2 - y^2 + 2ixy)

                            // = (x - x^2 + y^2) + i(y - 2xy)

                            let tempX = zx - (zx*zx - zy*zy);

                            let tempY = zy - (2*zx*zy);

                            // Multiply by c (cx + icy)

                            let nextX = cx * tempX - cy * tempY;

                            let nextY = cx * tempY + cy * tempX;

                            zx = nextX; zy = nextY;

                            iter++;

                        }

                    } else if (fractal === 'manowar') {

                        // z_n+1 = z_n^2 + z_n-1 + c

                        let cx = x0, cy = y0;

                        let prevZx = 0, prevZy = 0;

                        zx = 0; zy = 0;

                        while (zx*zx + zy*zy <= 4 && iter < MAX_ITER) {

                            let x2 = zx*zx - zy*zy;

                            let y2 = 2*zx*zy;

                            let nextZx = x2 + prevZx + cx;

                            let nextZy = y2 + prevZy + cy;

                            prevZx = zx; prevZy = zy;

                            zx = nextZx; zy = nextZy;

                            iter++;

                        }

                    } else if (fractal === 'nova') {

                        // z = z - (z^3 - 1)/(3z^2) + c

                        // Start z=1, c = pixel

                        let cx = x0, cy = y0;

                        zx = 1; zy = 0;

                        for (let i = 0; i < 50; i++) {

                            // Newton step for z^3 - 1

                            const zx2 = zx*zx, zy2 = zy*zy;

                            const denom = 3 * (zx2 - zy2)**2 + 12 * zx2 * zy2;

                            if (denom < 0.00001) { iter = MAX_ITER; break; }


                            // N(z) = z - (z^3-1)/3z^2

                            // Simplified: N(z) = (2z^3 + 1) / 3z^2

                            // Let's stick to the additive form: z_new = N(z) + c


                            // Calculate (z^3 - 1) / 3z^2

                            // Numerator: z^3 - 1 = (x^3 - 3xy^2 - 1) + i(3x^2y - y^3)

                            let numX = zx*(zx2 - 3*zy2) - 1;

                            let numY = zy*(3*zx2 - zy2);

                            // Denom: 3z^2 = 3(x^2 - y^2) + i(6xy)

                            let denX = 3*(zx2 - zy2);

                            let denY = 6*zx*zy;


                            let mag = denX*denX + denY*denY;

                            let fracX = (numX*denX + numY*denY) / mag;

                            let fracY = (numY*denX - numX*denY) / mag;


                            zx = zx - fracX + cx;

                            zy = zy - fracY + cy;


                            // Check convergence to roots of z^3 - 1 (1, -0.5 +/- i*sqrt(3)/2)

                            if ((zx-1)**2 + zy**2 < 0.001) { iter = i; break; }

                            // Simplified check for other roots or divergence

                            if (zx*zx + zy*zy > 4) { iter = i; break; } // Nova can diverge

                            if (i === 49) iter = MAX_ITER;

                        }

                    } else {

                        // Generic fallbacks

                        let cx = x0, cy = y0;

                        if (fractal === 'spider') { zx = 0; zy = 0; }


                        while (zx*zx + zy*zy <= 4 && iter < MAX_ITER) {

                            let xt = 0, yt = 0;

                            if (fractal === 'tricorn') { xt = zx*zx - zy*zy + x0; yt = -2*zx*zy + y0; }

                            else if (fractal === 'celtic') { xt = Math.abs(zx*zx - zy*zy) + x0; yt = 2*zx*zy + y0; }

                            else if (fractal === 'perpendicular') { xt = zx*zx - zy*zy + x0; yt = 2*zx*Math.abs(zy) + y0; }

                            else if (fractal === 'spider') { xt = zx*zx - zy*zy + cx; yt = 2*zx*zy + cy; cx = cx/2 + xt; cy = cy/2 + yt; }

                            else if (fractal === 'multibrot3') { xt = zx*(zx*zx - 3*zy*zy) + x0; yt = zy*(3*zx*zx - zy*zy) + y0; }

                            else if (fractal === 'multibrot4') { let x2=zx*zx, y2=zy*zy; xt = x2*x2 - 6*x2*y2 + y2*y2 + x0; yt = 4*zx*zy*(x2-y2) + y0; }


                            zx = xt; zy = yt;

                            iter++;

                        }

                    }


                    iterationBuffer[idx++] = iter;

                }

            }

        }


        function drawFractal() {

            const { width, height, colorScheme } = state;

            const imgData = ctx.createImageData(width, height);

            const data = imgData.data;

            const colorFn = colorSchemes[colorScheme];


            let idx = 0;

            for (let i = 0; i < iterationBuffer.length; i++) {

                const iter = iterationBuffer[i];

                const color = colorFn(iter);

                data[idx++] = color.r;

                data[idx++] = color.g;

                data[idx++] = color.b;

                data[idx++] = 255;

            }

            ctx.putImageData(imgData, 0, 0);

        }


        // --- Interaction ---


        function handleZoom(clientX, clientY, zoomIn) {

            const rect = canvas.getBoundingClientRect();

            const dpr = window.devicePixelRatio || 1;


            // Mouse pos in CSS pixels relative to canvas

            const x = clientX - rect.left;

            const y = clientY - rect.top;


            // Convert to Canvas pixels

            const cx = x * dpr;

            const cy = y * dpr;


            // Convert to World coordinates (current center)

            const wx = (cx - state.width / 2) * state.zoom + state.panX;

            const wy = (cy - state.height / 2) * state.zoom + state.panY;


            // Apply Zoom

            const factor = zoomIn ? 0.5 : 2.0;

            state.zoom *= factor;


            // Recenter on the clicked point

            state.panX = wx;

            state.panY = wy;


            requestRender(true);

        }


        // Mouse Events

        canvas.addEventListener('mousedown', e => {

            if (e.button === 0) handleZoom(e.clientX, e.clientY, true);

            if (e.button === 2) handleZoom(e.clientX, e.clientY, false);

        });


        canvas.addEventListener('contextmenu', e => e.preventDefault());


        // Touch Events (Pinch to Zoom)

        let initialPinchDist = -1;


        canvas.addEventListener('touchstart', e => {

            if (e.touches.length === 2) {

                e.preventDefault();

                const t1 = e.touches[0];

                const t2 = e.touches[1];

                initialPinchDist = Math.hypot(t2.clientX - t1.clientX, t2.clientY - t1.clientY);

            }

        }, {passive: false});


        canvas.addEventListener('touchmove', e => {

            if (e.touches.length === 2 && initialPinchDist > 0) {

                e.preventDefault();

                const t1 = e.touches[0];

                const t2 = e.touches[1];

                const dist = Math.hypot(t2.clientX - t1.clientX, t2.clientY - t1.clientY);


                // Center of pinch

                const midX = (t1.clientX + t2.clientX) / 2;

                const midY = (t1.clientY + t2.clientY) / 2;


                // Threshold to prevent jitter

                if (Math.abs(dist - initialPinchDist) > 10) {

                    const zoomIn = dist > initialPinchDist;

                    handleZoom(midX, midY, zoomIn);

                    initialPinchDist = dist; // Reset to allow continuous stepping

                }

            }

        }, {passive: false});


        canvas.addEventListener('touchend', () => { initialPinchDist = -1; });


        // UI Events

        fractalSelect.addEventListener('change', (e) => {

            state.fractal = e.target.value;

            resetView(); // Reset view when changing fractal type for better UX

        });


        colorSelect.addEventListener('change', (e) => {

            state.colorScheme = e.target.value;

            requestRender(false); // Only redraw colors!

        });


        document.getElementById('reset-btn').addEventListener('click', resetView);


        document.getElementById('fullscreen-btn').addEventListener('click', () => {

            if (!document.fullscreenElement) document.documentElement.requestFullscreen();

            else document.exitFullscreen();

        });


        toggleBtn.addEventListener('click', () => {

            uiLayer.classList.toggle('hidden');

            toggleBtn.innerHTML = uiLayer.classList.contains('hidden') ? '<i class="fas fa-cog"></i>' : '<i class="fas fa-bars"></i>';

        });


        // --- Save / Load (Modal Fallback) ---


        function showModal(title, desc, isImage, content) {

            modalTitle.textContent = title;

            modalDesc.textContent = desc;


            if (isImage) {

                exportImg.src = content;

                exportImg.style.display = 'block';

                exportArea.style.display = 'none';

                copyBtn.style.display = 'none';

            } else {

                exportArea.value = content;

                exportImg.style.display = 'none';

                exportArea.style.display = 'block';

                copyBtn.style.display = 'block';

            }


            modalOverlay.style.display = 'flex';

        }


        modalClose.addEventListener('click', () => {

            modalOverlay.style.display = 'none';

        });


        copyBtn.addEventListener('click', () => {

            exportArea.select();

            document.execCommand('copy');

            copyBtn.textContent = 'Copied!';

            setTimeout(() => copyBtn.textContent = 'Copy to Clipboard', 2000);

        });


        document.getElementById('save-img-btn').addEventListener('click', () => {

            const dataUrl = canvas.toDataURL('image/png');

            showModal('Save Image', 'Right-click the image below and select "Save Image As..."', true, dataUrl);

        });


        document.getElementById('save-state-btn').addEventListener('click', () => {

            const data = JSON.stringify(state, null, 2);

            showModal('Save State', 'Copy the code below and save it to a .json file.', false, data);

        });


        document.getElementById('load-state-btn').addEventListener('click', () => {

            document.getElementById('file-input').click();

        });


        document.getElementById('file-input').addEventListener('change', (e) => {

            const file = e.target.files[0];

            if (!file) return;

            const reader = new FileReader();

            reader.onload = (ev) => {

                try {

                    const loaded = JSON.parse(ev.target.result);

                    // Merge loaded state

                    state.fractal = loaded.fractal;

                    state.colorScheme = loaded.colorScheme;

                    state.panX = loaded.panX;

                    state.panY = loaded.panY;

                    state.zoom = loaded.zoom;


                    // Update UI

                    fractalSelect.value = state.fractal;

                    colorSelect.value = state.colorScheme;


                    requestRender(true);

                } catch(err) {

                    alert("Invalid state file");

                }

            };

            reader.readAsText(file);

            e.target.value = '';

        });


        // Init

        window.addEventListener('resize', () => {

            // Debounce resize

            clearTimeout(window.resizeTimer);

            window.resizeTimer = setTimeout(resize, 100);

        });


        resize();


    </script>

</body>

</html>